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FIG. 1. The patterns of wintertime (Dec–Mar), anomalous SST, ocean–atmosphere turbulent heat flux (latent plus sensible), and surface
wind vectors, associated (via linear regression) with the leading PC of SST variability in the (a), (c) North Atlantic and (b), (d) North Pacific.
(a), (b) The observations from 1949 to 1999 (data from NCEP–NCAR reanalysis). (c), (d) The mean of a 10-member ensemble GCM
integrations forced with global, time-varying SST anomalies from 1950 to 1999 (ECHAM3.5 GCM data provided by L. Goddard). Heat
fluxes are in W m22 with positive (negative) values in solid (dashed) contours every 3 W m22. The zero contour is bold. Arrows depict the
wind vectors in m s21 with scales as shown in panels. The SST anomaly values (C8) are denoted in colors according to scale (note that scale
is kept at the 20.58–0.58C range for overall clarity, however, values in eastern equatorial Pacific extend up to 1.28C).

varying SST anomalies [AMIP (Atmospheric Model In-
tercomparison Project) type experiments]. Finally, in
section 5, we discuss the recent extension of the inves-
tigation to the realm of coupled model experiments.
Conclusions follow in section 6.

2. The observed pattern of extratropical
atmosphere–ocean anomalies

a. Fundamental properties of extratropical SST
anomalies

As described in F85, The salient features of observed
extratropical SST anomalies and their associated at-
mospheric patterns are as follows:

• Extratropical SST anomalies have large, basin-size,
scales. While small-scale perturbations in SST (as-

sociated with mesoscale ocean eddies) are visible in
high-resolution data, there is a distinct large-scale sig-
nature in midlatitude SST variability that is similar to
the scale of atmospheric low-frequency variability
(Namias and Cayan 1981; Wallace and Jiang 1987;
and Figs. 1a,b).

• SST anomalies are the surface expression of changes
in the heat content of a well-mixed upper-ocean layer
that represents a large thermal reservoir. This property
grants SST anomalies large persistence compared to
atmospheric anomalies. The e-folding timescale of
midlatitude SST anomalies is typically 3–5 months
(Barnett 1981; Frankignoul and Reynolds 1983).

• Over most of the World Ocean, monthly and seasonal
extratropical SST anomalies are well correlated with
the overlying surface air temperature anomalies (F85,
see section 2.3).

Kushnir et al. 2002

15 AUGUST 2002 2235K U S H N I R E T A L .

FIG. 1. The patterns of wintertime (Dec–Mar), anomalous SST, ocean–atmosphere turbulent heat flux (latent plus sensible), and surface
wind vectors, associated (via linear regression) with the leading PC of SST variability in the (a), (c) North Atlantic and (b), (d) North Pacific.
(a), (b) The observations from 1949 to 1999 (data from NCEP–NCAR reanalysis). (c), (d) The mean of a 10-member ensemble GCM
integrations forced with global, time-varying SST anomalies from 1950 to 1999 (ECHAM3.5 GCM data provided by L. Goddard). Heat
fluxes are in W m22 with positive (negative) values in solid (dashed) contours every 3 W m22. The zero contour is bold. Arrows depict the
wind vectors in m s21 with scales as shown in panels. The SST anomaly values (C8) are denoted in colors according to scale (note that scale
is kept at the 20.58–0.58C range for overall clarity, however, values in eastern equatorial Pacific extend up to 1.28C).

varying SST anomalies [AMIP (Atmospheric Model In-
tercomparison Project) type experiments]. Finally, in
section 5, we discuss the recent extension of the inves-
tigation to the realm of coupled model experiments.
Conclusions follow in section 6.

2. The observed pattern of extratropical
atmosphere–ocean anomalies

a. Fundamental properties of extratropical SST
anomalies

As described in F85, The salient features of observed
extratropical SST anomalies and their associated at-
mospheric patterns are as follows:

• Extratropical SST anomalies have large, basin-size,
scales. While small-scale perturbations in SST (as-

sociated with mesoscale ocean eddies) are visible in
high-resolution data, there is a distinct large-scale sig-
nature in midlatitude SST variability that is similar to
the scale of atmospheric low-frequency variability
(Namias and Cayan 1981; Wallace and Jiang 1987;
and Figs. 1a,b).

• SST anomalies are the surface expression of changes
in the heat content of a well-mixed upper-ocean layer
that represents a large thermal reservoir. This property
grants SST anomalies large persistence compared to
atmospheric anomalies. The e-folding timescale of
midlatitude SST anomalies is typically 3–5 months
(Barnett 1981; Frankignoul and Reynolds 1983).

• Over most of the World Ocean, monthly and seasonal
extratropical SST anomalies are well correlated with
the overlying surface air temperature anomalies (F85,
see section 2.3).

North Atlantic Oscillation

Large-scale air-sea interactions: 
Winds over a slab ocean without dynamic eddies/fronts

Pacific Decadal Oscillation



Air-sea interaction with no dynamic role of ocean eddies/fronts
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However, the oceans are filled with energetic eddies and fronts
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Eddy-mediated air-sea interaction
—Correlation between high-pass filtered wind speed and SST

Oceanic forcing of the atmosphere on frontal and mesoscales.
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Mesoscale SST alters the vertical mixing in the ABL
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FIG. 9. (top) Longitude–height section of zonal wind velocity (vectors) and virtual potential temperature (K) (contours
and shading) during the IOP. (bottom) SST (�C). The numerals with the plot refer to the number of the sounding site
(see Fig. 1).

FIG. 10. (a) 5-min sea surface pressure (SLP in hPa) measured by
the Shoyo-maru along 2�N. (b) SLP ⇧ 1015 (hPa) with the diurnal
and semidiurnal harmonics removed. (c) SST (�C).

cause f /⇤ ⇥ 0.24 ( f is the Coriolis parameter). The
equation for surface zonal velocity may be reduced to

1 dP
⇧⇤U ⇥ . (1)

⌃ dx

Here, the momentum mixing with the free atmosphere
was neglected for simplicity, but the entrainment across
the inversion may be important in the climatological
balance of the mean boundary layer wind (Stevens et
al. 2002). For a sinusoidal SST wave of an amplitude

of 1�C, the amplitude of the zonal wind response is U
⌅ 12 m s⇧1, far too large compared to observations.
Figure 10a shows the 5-min SLP measurements made

on board the Shoyo-maru, which are dominated by semi-
diurnal and diurnal tides with amplitudes of about 2
hPa. We apply the harmonic analysis and remove the
semidiurnal and diurnal harmonics. The resultant time
series has a typical amplitude of 1.0 hPa at low fre-
quencies (Fig. 10b). The tide-removed SLP, however,
does not seem correlated with local SSTs. For example,
no SLP increase is observed over any of the four SST
minima between 140� and 110�W, indicating that the
SLP response to TIWs is much smaller than 0.4 hPa,
the hydrostatic pressure due to a 1�C temperature change
within the PBL. The small SLP response is consistent
with previous inferences based on buoy and satellite
wind measurements (Hayes et al. 1989; Xie et al. 1998;
Chelton et al. 2001; Hashizume et al. 2001).

b. Vertical structure

Then what is responsible for the reduced SLP re-
sponse? Figure 11a shows the longitude–height section
of zonally high-pass filtered anomalies of virtual po-
tential temperature. In addition to anomalies below 1000
m that are roughly of the same signs as the local SST
anomalies, larger anomalies of the opposite signs are
found further above between 1000–1600 m, which were
not considered in our first attempt at SLP estimate. The
latter anomalies are associated with the vertical dis-
placement of the main PBL-capping inversion. Over
warm SSTs, air temperature below the inversion in-
creases via turbulent heat flux. At the same time, the
main inversion rises (star symbols), leading to a strong

Hashizume 
et al. 2002



Let’s look at the wind stress

τ = ρa CD (W− U) |W − U| U: surface current vector
W: 10m wind vector W = Wb + WSST

Ekman pumping anomaly in 
quadrature with SSH 

→ Affect the position (southward)

SST and SSH
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Because of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects
Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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How important is this mesoscale air-sea coupling on the ocean?



τ = ρa CD (W− U) |W − U|
W = Wb + WSST

SST and SSH
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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Because of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects
Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.

Dudley Chelton

Surface temperature
and height

Upwelling from 
surface temperature

Upwelling from 
surface currents U

pw
elling velocity (cm

 day
–1)

(w
ith contour interval = 0.5 cm

 day
–1)

2

a b c

2

1

1

0.5

–0.5

0

0.25

–0.25

0

–1

–2
–2 –1 0

2

2

1

1

0

–1

–2
–2 –1 0

2 6

3

–3

–6

0

2

1

1

0

–1

–2
–2 –1 0

Surface tem
perature (°C)

(w
ith contours of surface

height at 2 cm
 intervals)

Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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of the cold cusps is reproduced with remarkable fidelity
in the corresponding 3-day average maps of the wind
stress shown in Figs. 4b,c. A similar coincidence of
TIW-related perturbations of SST and wind stress mag-
nitude is evident along the weaker cusp-shaped southern
SST front. The wind stress is higher over warm water
and lower over cold water. As summarized in the in-
troduction, the close relationship between SST and wind
stress magnitude is at least qualitatively consistent with
the SST-induced modification of atmospheric boundary
layer stability hypothesized by Wallace et al. (1989).
This relation is quantified below.
The effects of SST-induced changes of atmospheric

stability on the overlying wind stress depend on both
the SST gradient and the wind direction relative to the
SST gradient vector. There is therefore no general linear
relation between the gradient of the wind stress mag-
nitude and the SST gradient. The wind stress response
to geographical variations of the underlying SST field
can be better characterized in terms of the wind stress
divergence, = · t , shown in Fig. 4d. In the Northern
Hemisphere, a band of high divergence follows the cusp
patterns along the northern SST front where the wind
stress increases as the air flows across isotherms toward
warmer water. The largest wind stress divergences are
located directly over the strongest SST gradients. It is
visually apparent that the divergence is locally larger
where the wind stress is aligned perpendicular to iso-
therms (i.e., parallel to the SST gradient vector).
The importance of the alignment between the wind

stress and the SST gradient is also apparent from the
relationship between the wind stress divergence and
SST south of the equator. The SST gradients are weaker
and spatially irregular and the isotherms tend to be more
nearly aligned with the wind stress vectors, resulting in
relatively small SST-induced downwind modification of
the wind stress. Convergence of the wind stress is none-
theless apparent in patches where the wind stress de-
creases as the air flows across perturbed isotherms to-
ward cooler water.
The hypothesized SST modification of the wind stress

field can be independently investigated from the rela-
tionship between the crosswind SST gradient and the
vertical component of the wind stress curl, = 3 t · k̂,
where k̂ is a unit vector in the vertical direction. Along
the cuspy northern SST front, the wind stress curl is
positive where the winds blow parallel to isotherms (i.e.,
perpendicular to the SST gradient vector; see Fig. 4e).
This pattern in the wind stress curl field develops be-
cause the winds are stronger over the warmer water to
the right of the wind direction, resulting in a lateral
gradient of the wind stress that corresponds to a positive
wind stress curl. As the winds over the region of interest
blow toward the northwest during the 3-month period
considered here (see Figs. 1b and 4c), the largest wind
stress curl occurs on the southwestern boundaries of the
warm anomalies between successive cold SST cusps
(see Fig. 4e).

In the Southern Hemisphere, large negative wind
stress curl occurs in patches where the wind blows par-
allel to perturbed isotherms in regions where water is
warmer to the left of the wind direction. The latitudinal
extent of this band of negative wind stress curl is much
wider and the magnitudes are somewhat weaker than in
the northern band of positive wind stress curl because
the southern SST front is much broader than the northern
SST front (see Figs. 1a and 4a).
The band of persistent negative wind stress curl north

of about 38N in Fig. 4e is noteworthy. This feature is
a manifestation of large-scale eastward curving of the
cross-equatorial winds (see Fig. 1b). Lindzen and Nigam
(1987), Mitchell and Wallace (1992), and others have
noted that the contrast between the cool atmospheric
boundary layer air over the equatorial cold tongue and
the warmer air to the north enhances the northward sea
level pressure gradient in this region. The anticyclonic
turning of the cross-equatorial flow north of 38N where
the Coriolis acceleration becomes important may occur
because of geostrophic adjustment of the vertically in-
tegrated boundary layer flow to the SST-enhanced pole-
ward pressure gradient (e.g., Young 1987; Tomas et al.
1999). This adjustment process is physically distinct
from the SST-induced boundary layer modification of
interest in this study. The statistical analyses of TIW-
induced perturbations of the wind stress fields that fol-
low are therefore restricted to the latitude range from
38N to 58S.
If the relations between the derivative wind stress

fields and the underlying SST field described qualita-
tively above from the case study shown in Fig. 4 are
quantitatively correct, then the wind stress divergence
will vary in proportion to the downwind SST gradient.
This component of =T is given by the vector dot product

5 |=T| cosu, where T is SST, is a unit vector=T · t̂ t̂
in the direction of the wind stress, and u is the coun-
terclockwise angle from the vector =T to . Similarly,t̂
the wind stress curl will vary in proportion to the cross-
wind component of the SST gradient that can be char-
acterized by the vector cross product =T 3 5 |=T|t̂ · k̂
sinu.
Quantifying the relation between the derivative wind

stress fields and the angle u is complicated by the highly
nonuniform (bimodal) distribution of u (see thick solid
line in Fig. 5a). As shown by the dashed line in Fig.
5a, the peak in the histogram centered near u 5 21008
is composed almost entirely of observations within the
region south of the cold tongue (18–58S) where the
winds blow approximately parallel to isotherms (i.e.,
=T and are approximately orthogonal). Similarly, itt̂
is apparent from the thin solid line in Fig. 5a that the
peak in the histogram centered near u 5 308 is composed
almost entirely of observations within the region north
of the cold tongue (38N–18S) where the winds blow
obliquely across isotherms.
The 3-month statistics of the dependencies of the

magnitudes of =T and = |t | on u are summarized in
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of the cold cusps is reproduced with remarkable fidelity
in the corresponding 3-day average maps of the wind
stress shown in Figs. 4b,c. A similar coincidence of
TIW-related perturbations of SST and wind stress mag-
nitude is evident along the weaker cusp-shaped southern
SST front. The wind stress is higher over warm water
and lower over cold water. As summarized in the in-
troduction, the close relationship between SST and wind
stress magnitude is at least qualitatively consistent with
the SST-induced modification of atmospheric boundary
layer stability hypothesized by Wallace et al. (1989).
This relation is quantified below.
The effects of SST-induced changes of atmospheric

stability on the overlying wind stress depend on both
the SST gradient and the wind direction relative to the
SST gradient vector. There is therefore no general linear
relation between the gradient of the wind stress mag-
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to geographical variations of the underlying SST field
can be better characterized in terms of the wind stress
divergence, = · t , shown in Fig. 4d. In the Northern
Hemisphere, a band of high divergence follows the cusp
patterns along the northern SST front where the wind
stress increases as the air flows across isotherms toward
warmer water. The largest wind stress divergences are
located directly over the strongest SST gradients. It is
visually apparent that the divergence is locally larger
where the wind stress is aligned perpendicular to iso-
therms (i.e., parallel to the SST gradient vector).
The importance of the alignment between the wind

stress and the SST gradient is also apparent from the
relationship between the wind stress divergence and
SST south of the equator. The SST gradients are weaker
and spatially irregular and the isotherms tend to be more
nearly aligned with the wind stress vectors, resulting in
relatively small SST-induced downwind modification of
the wind stress. Convergence of the wind stress is none-
theless apparent in patches where the wind stress de-
creases as the air flows across perturbed isotherms to-
ward cooler water.
The hypothesized SST modification of the wind stress

field can be independently investigated from the rela-
tionship between the crosswind SST gradient and the
vertical component of the wind stress curl, = 3 t · k̂,
where k̂ is a unit vector in the vertical direction. Along
the cuspy northern SST front, the wind stress curl is
positive where the winds blow parallel to isotherms (i.e.,
perpendicular to the SST gradient vector; see Fig. 4e).
This pattern in the wind stress curl field develops be-
cause the winds are stronger over the warmer water to
the right of the wind direction, resulting in a lateral
gradient of the wind stress that corresponds to a positive
wind stress curl. As the winds over the region of interest
blow toward the northwest during the 3-month period
considered here (see Figs. 1b and 4c), the largest wind
stress curl occurs on the southwestern boundaries of the
warm anomalies between successive cold SST cusps
(see Fig. 4e).

In the Southern Hemisphere, large negative wind
stress curl occurs in patches where the wind blows par-
allel to perturbed isotherms in regions where water is
warmer to the left of the wind direction. The latitudinal
extent of this band of negative wind stress curl is much
wider and the magnitudes are somewhat weaker than in
the northern band of positive wind stress curl because
the southern SST front is much broader than the northern
SST front (see Figs. 1a and 4a).
The band of persistent negative wind stress curl north

of about 38N in Fig. 4e is noteworthy. This feature is
a manifestation of large-scale eastward curving of the
cross-equatorial winds (see Fig. 1b). Lindzen and Nigam
(1987), Mitchell and Wallace (1992), and others have
noted that the contrast between the cool atmospheric
boundary layer air over the equatorial cold tongue and
the warmer air to the north enhances the northward sea
level pressure gradient in this region. The anticyclonic
turning of the cross-equatorial flow north of 38N where
the Coriolis acceleration becomes important may occur
because of geostrophic adjustment of the vertically in-
tegrated boundary layer flow to the SST-enhanced pole-
ward pressure gradient (e.g., Young 1987; Tomas et al.
1999). This adjustment process is physically distinct
from the SST-induced boundary layer modification of
interest in this study. The statistical analyses of TIW-
induced perturbations of the wind stress fields that fol-
low are therefore restricted to the latitude range from
38N to 58S.
If the relations between the derivative wind stress

fields and the underlying SST field described qualita-
tively above from the case study shown in Fig. 4 are
quantitatively correct, then the wind stress divergence
will vary in proportion to the downwind SST gradient.
This component of =T is given by the vector dot product

5 |=T| cosu, where T is SST, is a unit vector=T · t̂ t̂
in the direction of the wind stress, and u is the coun-
terclockwise angle from the vector =T to . Similarly,t̂
the wind stress curl will vary in proportion to the cross-
wind component of the SST gradient that can be char-
acterized by the vector cross product =T 3 5 |=T|t̂ · k̂
sinu.
Quantifying the relation between the derivative wind

stress fields and the angle u is complicated by the highly
nonuniform (bimodal) distribution of u (see thick solid
line in Fig. 5a). As shown by the dashed line in Fig.
5a, the peak in the histogram centered near u 5 21008
is composed almost entirely of observations within the
region south of the cold tongue (18–58S) where the
winds blow approximately parallel to isotherms (i.e.,
=T and are approximately orthogonal). Similarly, itt̂
is apparent from the thin solid line in Fig. 5a that the
peak in the histogram centered near u 5 308 is composed
almost entirely of observations within the region north
of the cold tongue (38N–18S) where the winds blow
obliquely across isotherms.
The 3-month statistics of the dependencies of the

magnitudes of =T and = |t | on u are summarized in
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Can we quantify the effects of the two distinctive feedback 
process?

Let’s look at two summertime boundary current systems:
California Current System & Somali Current System
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Local mesoscale coupled feedback with potential downstream influences
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Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model 
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Cape Blanco

Cape Mendocino

7km CCS 

• Bulk formula or WRF 
PBL physics

• An input-output based 
coupler: portable & 
flexible

• Matching grids in the 
ocean and atmosphere

Seo et al. (2007; 2014; 
2016, JCLI)

9km AS

http://hseo.whoi.edu/scoar/

NCEP-FNL
SODA

India

http://hseo.whoi.edu/scoar/


Separation of spatial-scale of air-sea coupling
Putrasahan et al. (2013); Seo et al. (2016); Seo (2017)

Experiments τ formulation

CTL Tb Te Ub Ue

noTe Tb Ub Ue

noUe Tb Te Ub

noUtot Tb Te

Model Coupler

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model 

http://hseo.whoi.edu/scoar/

Smoothed
SST/CUR

Full
SST/CUR

Online 2-D Loess 
smoothing (~3°×3°)

Seo et al. (2007; 2014; 
2016, JCLI)

http://hseo.whoi.edu/scoar/


•  Te-τ has no impact on EKE
•  Ue-τ reduces the EKE by 40%
•  Utot-τ reduces the EKE only slightly 
more (additional 10%)
→ The EKE reduction by under-
stress occurs largely due to small-
scale coupling

JAS 2005-2010

CTL: Te & Ue

noUe

noTeAVISO

noUtot

117cm2/s2 116cm2/s2

(-1%)

166cm2/s2

(+42%)
179cm2/s2

(+53%)

CCS: Effect on Eddy Kinetic Energy

Seo et al. 2016 JPO
Te-driven EkP
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).

© 2013 Macmillan Publishers Limited. All rights reserved
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 

OCEAN–ATMOSPHERE COUPLING

Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).

© 2013 Macmillan Publishers Limited. All rights reserved
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Because of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
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surface stress through their horizontally 
rotating surface currents, an effect that is even 
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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time (JAS) climatology, and the primes are the de-
viation from the mean. The BC term represents an
energy conversion process during baroclinic instability,
whereby mean available potential energy is converted
into EKE. The BT term represents the conversion of
the mean kinetic energy to EKE, which is typically
dominated by two processes: the horizontal and verti-
cal Reynolds stresses indicative of (equivalent) baro-
tropic instability and Kelvin–Helmholtz instability.
The P term is the work done by the wind on the ocean,
representing eddy–wind interactions. If positive, it
supplies wind energy to the ocean and increases the
EKE, thus serving as the wind work; if negative, it is
part of the dissipation of the EKE. Assuming the length
scale of the eddies to be the internal Rossby radius of
deformation L, the depth H to which the terms (4)–(6)
are to be averaged is determined byH5 fL/N; using f5
1024, L 5 104, and N 5 1022, a characteristic depth
scale of H 5 100m is obtained. Averaging over dif-
ferent depth ranges does not change the results con-
siderably due to the similarity of the vertical structure
in the EKE (Fig. 5).

Figure 7 shows the three energy conversion terms
from CTL. Strongest near the coast north of San Fran-
cisco, P is the dominant source term for EKE. BC is of
secondary importance over the shelf. The sum of the
effects of barotropic and Kelvin–Helmholtz instabilities
(BT) is small, perhaps because the model does not fully
resolve the small-scale shear of the currents (Brink 2016;
Brink and Seo 2016). Decomposition of P into the zonal
[Px 5 (1/r0)u

0t0x] and the meridional [Py 5 (1/r0)y
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components suggests that, not surprisingly, most of the
EKE increase is via the positive correlation between y0
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generated as a response to the alongshore wind stress
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The zonal component Px is weak but negative in the

upwelling zone, which acts to dissipate the EKE. The
negative correlation between u0 and tx

0 is explained by
the fact that the zonal current at the surface u0 is in part a
wind-driven Ekman response to southward ty

0 (Fig. 2);
that is, when ty

0 is negative (upwelling favorable), the
portion of u0 that is driven by the Ekman transport is
directed offshore. During typical upwelling conditions,
tx
0 is weakly eastward since the large-scale wind stress is
southeastward (Fig. 2). Thus, u0 and tx

0 should be in the
opposite direction during the upwelling conditions. This
is evidenced by the fact that negative Px is strong over
the upwelling zone south of Cape Blanco, where the
eastward component of the wind stress emerges in
the lee of capes and with the southeastward bend of the
coastline (Dorman and Kora!cin 2008). This implies that
the inclusion of the surface current effect reflects not
only the small-scale eddies (internal variability), but also
the linear wind-driven Ekman component that is char-
acteristic of summertime eastern boundary current sys-
tems. Therefore, some of the Ue effects discussed in this

FIG. 6. Monthly time series of the simulated surface EKE (cm2 s22) averaged over the up-
welling zone (328–458N, 1308–1208W; Fig. 4b).
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intervals as the SSH observations using temporal low-pass filtering with a half-power filter cutoff146

of 30 days.147

Scatterometers are not able to estimate the relative wind in the presence of rain. As rain is148

more likely in regions of convergent winds associated with cyclonic surface stress curl, a small149

but systematic anticyclonic bias is introduced in the surface stress curl measurement (Milliff and150

Morzel 2001; Milliff et al. 2004). Because mesoscale eddies propagate and evolve more slowly151

than raining atmospheric disturbances, this bias is not a major concern; QuikSCAT adequately152

samples the surface stress curl associated with eddy surface currents since measurements of the153

relative wind are on average rain-free more than 85% of the time in the regions invested in sections154

5 and 6.155

Wind influences the potential vorticity of the ocean’s interior through Ekman pumping. Fol-156

lowing Stern (1965), the total Ekman pumping can be decomposed as157
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where ⇢
o

= 1020 kg m�3 is the (assumed constant) surface density of seawater, f = 2⌦ cos ✓ is158

the Coriolis parameter for latitude ✓ and Earth rotation rate ⌦, and � = @f/@y. The surface stress159

⌧⌧⌧ has zonal and meridional components ⌧x and ⌧ y, respectively, and ⇣ is the relative vorticity160

of the surface velocity field estimated from centered finite differences of the SSH fields. The161

resulting Ekman pumping fields computed from (3) were spatially high-pass filtered to remove162
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 
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Mesoscale eddy effects Interactions between the ocean and atmosphere are complex. An analysis of satellite data from the Southern 
Ocean reveals a tight coupling of ocean and atmosphere on horizontal scales of around 100 km that modifies both 
near-surface winds and ocean circulation.
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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B
ecause of its enormous heat capacity, 
the ocean plays a critical role in 
regulating the Earth’s climate. Up to 

about a decade ago, it was generally believed 
that, outside the tropics, the ocean responds 
only passively to atmospheric forcing1. 
However, with the advent of satellite 
measurements of sea surface temperature 
and surface winds with resolutions down 
to about 50 km, it became apparent that the 
strong gradients in sea surface temperature 
that are associated with meanders in the 
Gulf Stream, the California Current and 
most other ocean currents can directly 
affect surface winds1–3. Writing in Nature 
Geoscience, Frenger et al.4 present evidence 
of this same coupling between sea surface 
temperature and wind speed occurring over 
circular rotating eddies with radii of around 
100 km (referred to as mesoscale) that are 
found throughout the ocean5.

Over warm ocean regions, the marine 
atmospheric boundary layer — the lowest 
level of the atmosphere that is directly 
influenced by the ocean beneath — is locally 
heated. Likewise, above colder sea surface 
temperatures, the marine atmospheric 
boundary layer cools. As a result, strong 
gradients in the temperature of the ocean 
surface, for example where the Gulf 
Stream carries warm water northwards 
into a cooler surrounding ocean, affect the 
atmospheric temperature structure. These 
changes in atmospheric temperature, in 
turn, alter turbulent mixing of the air as well 
as atmospheric pressure anomalies in the 
boundary layer. Both effects create winds with 
higher speeds over warmer water and lower 
speeds over cooler water.

Frenger et al.4 examined atmospheric 
conditions that are coupled to spatial 
variations in sea surface temperature, using 
more than 600,000 satellite observations of 
mesoscale eddies in the Southern Ocean. 
To do this, they studied multiple sets of 
collocated satellite data, consisting of radar 
altimeter measurements of sea surface height, 
microwave radiometer measurements of sea 
surface temperature and radar scatterometer 
measurements of surface winds. According 
to their analysis, cool sea surface temperature 

anomalies associated with cyclonic — that 
is, clockwise-rotating in the Southern 
Hemisphere — eddies weaken surface winds, 
whereas warm anomalies associated with 
anticyclonic eddies strengthen surface winds. 
The eddies not only leave a remarkably clear 
imprint on the surface wind field, but their 
relatively small-scale anomalies in sea surface 
temperature also modify low-level clouds and 
precipitation. The relationships apparently 
hold throughout the Southern Ocean.

The coupling between mesoscale 
ocean eddies and atmospheric conditions 
documented by Frenger et al. occurs 
globally6, but seems to be restricted to 
the marine atmospheric boundary layer. 
Moreover, the eddy-induced perturbations of 
wind speed, clouds and precipitation amount 
only to a few per cent of the mean states 
of these fields. As such, it is unlikely that 
eddies have much influence on atmospheric 
circulation above the marine boundary layer, 
which is where the patterns of weather and 
climate variability are determined.

There is no doubt, however, that the 
eddy influence on the overlying atmosphere 

in turn affects the ocean circulation. 
Frenger et al. mention two such effects. 
Changes in wind speed and cloud fraction 
over eddies can dampen the sea surface 
temperature anomalies in the eddy interior, 
thus attenuating the eddies. Furthermore, 
anomalies in sea surface temperatures 
associated with mesoscale eddies affect the 
wind stress curl, a measure of lateral shear and 
rotation of the surface winds that is the key 
control of vertical velocities in the open ocean.

Vertical water velocities that result from 
the wind stress curl associated with eddy-
induced sea surface temperatures anomalies 
— such as those identified by Frenger et al. 
from composites of many eddies — consist of 
a dipole structure: upwelling occurs on one 
side of the eddy and downwelling on the other 
(Fig. 1). It is not yet fully understood how 
this dipole structure affects eddy energetics; 
however, a numerical simulation found a 
decrease of about 25% in the kinetic energy of 
the eddy field7.

Eddies also influence the curl of the 
surface stress through their horizontally 
rotating surface currents, an effect that is even 
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Figure 1 | Vertical ocean velocities induced by an idealized Southern Ocean eddy. a,b, Mesoscale ocean 
eddies have distinct patterns of surface temperature and height, with warm temperatures and elevated 
height at the centre of an anticlockwise-rotating eddy in the Southern Hemisphere (a) and vice versa for a 
clockwise-rotating eddy. Frenger and colleagues4 show that the temperature patterns alter surface winds, 
cloud cover and rainfall, which in turn affect the eddies. For example, eastward winds of 10 m s–1 over the 
idealized eddy in a would induce vertical velocities with a dipole structure of downwelling in the northern 
half of the eddy, and upwelling in the southern half (b). c, The rotating surface currents associated with 
the eddies have an even stronger effect on the vertical velocities, in the form of a monopole structure of 
upwelling centred on the core of the idealized eddy in a under eastward winds of 10 m s–1. The signs of the 
surface temperature and height anomalies in a and the upwelling and downwelling patterns in b and c 
reverse for clockwise-rotating eddies (adapted with permission from ref. 6).
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Confirming two distinct influences of air-sea coupling:
U-𝜏 coupling decreases the KE by reducing the momentum input

2001-2010 JJAS climatology



CTL
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SSH 15cm: GW

• About 1° 
downstream 
shifts o the GW 
in noTe

~1°

Te-𝜏 influences the position of the Great Whirl (GW)



• Reduced MKE by 35% 
due to reduced Pm 

• 
•Weakened EKE due to 
reduced BT/BC

U-𝜏 coupling influences the amplitude but not the position
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Summary and Discussion

Distinct impacts of air-sea interaction mediated by SST vs surface current 
on the energetics of the two summertime boundary current systems

• Te-𝜏 coupling affects the position of eddy fields through Ekman pumping
→ E.g., Great Whirl is shifted by ~1° downstream.

• Ue-𝜏 coupling attenuates the kinetic energy 
→ by reducing wind work and increasing eddy-drag. 
→ Negative correlation between Wζ and the vorticity of the eddy

• (not discussed today) Some evidence of downstream atmospheric 
response → Air–sea interaction study should consider both the thermal 
and mechanical coupling effect on the oceanic mesoscales and frontal-
scales.
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Some downstream influence

SST

qV850

• Small (~5%) but significant change in the axis of the Findlater Jet and the 
associated moisture transport


