Coupled ocean-atmosphere interaction mediated by the ocean mesoscale eddies in the Northwest Tropical Atlantic Ocean

ATOMIC/EUREC⁴A

NBC rings: 7-14 km/day for ~100 days ECCO2 ocean state estimate

Hyodae Seo & Carol Anne Clayson

Woods Hole Oceanographic Institution

momentum, heat and moisture fluxes.

vertical mixing and wind work on the ocean and drives atmospheric boundary layer and cloud responses.

Hypotheses

- 1. Mesoscale ocean current and SST cause significant spatiotemporal variations (sub-monthly and sub-100-200 km) in the
- 2. This ocean-forced variability in air-sea fluxes influences the

Specific Questions and Approaches

1) How well does the numerical model with the COARE bulk flux algorithm reproduce the observed fluxes on oceanic mesoscale?

Simulated vs. observed air-sea fluxes across the fronts & Pre-cruise modeling experiments.

2) What are the controlling factors on the spatial structure and temporal variability of the observed air-sea fluxes?
– Various 1D and 3D sensitivity experiments. Develop a diagnostic metric.

3) How does the resulting air-sea flux variability impact the atmospheric boundary layer, and what are the critical feedback mechanisms?

Long-term mesoscale-resolving coupled experiments

Significant eddy-wind interactions?

Strong surface current and eddy activity under the steady northeasterly trade winds

10°N

5°N

0°

5°S

Mesoscale SST alters the vertical mixing in the ABL

Imprints of surface current in wind stress curl

correlation: wind stress curl and surface voriticity; 1993-2015 DJFM

Air-sea interaction over an idealized NBC ring

(a) SSH and Wind, Jan 31 (b) warm-core ring & uniform wind

$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$

Air-sea interaction over an idealized NBC ring

(a) SSH and Wind, Jan 31 (b) warm-core ring & uniform wind

SST effect on wind $\tau = \rho_a C_D (\underline{W} - \underline{U})^2$

SST-wind coupling

SST-wind: small change in wind work, affect the eddy propagation

Air-sea interaction over an idealized NBC ring

(a) SSH and Wind, Jan 31 (b) warm-core ring & uniform wind

ocean $\tau = \rho_a C_D (\underline{W} - \underline{U})^2$ current SST-wind coupling Current-wind coupling 50 50 -50 -50 50 -50 -50 0 km km 15 -15 15 -10 5 10 -15 -10 Wek (cm day⁻¹) Wek (cm day⁻¹)

SST-wind: small change in wind work, affect the eddy propagation Current-wind: negative eddy wind work, damp the eddy activity

Seo 2017, JCLI

Scripps Coupled Ocean-Atmosphere Regional (SCOAR) Model

Scale-selective air-sea coupling

Physics of air-sea coupling and impacts on upper ocean mixing and stratification

Upscaling effects on regional precipitation patterns

Seo et al. (2007; 2014; 2016, JCLI)

http://hseo.whoi.edu/scoar/

Exploring sampling possibilities 5km WRF-ROMS test simulations Jan-Feb 2012

28 27.2 27.4 27.6 27.8 27

7 8 9 10111213141516171819202122 January 2012

Exploring sampling possibilities 5km WRF-ROMS test simulations Jan-Feb 2012

Repeat sampling across the front at ~2kt SST and SSH 2012-01-18-23

11121314151617181920212223242526 January 2012

Collaborations

- Coordinated experiments with LES and submesoscaleresolving modeling (e.g., McWilliams, Renault, Sullivan)
 Use common sets of model physics. Share the input and
 - Use common sets of moforcing data.
- Effect of wave coupling in the air-sea fluxes
 - Refine and test the wave-based formulation in the COARE against the wave properties and flux measurements

Thanks hseo@whoi.edu