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Outline

l. : downscaling projection of global
warming scenario => Role of oceanic eddies and currents in
Atlantic.

: Impact of ocean state (SST, D26, UOHC)
on TC intensity = Case study of Hurricane Katrina



|. Equatorial Atlantic Ocean’s response to global warming forcing



* CGCMs for projections of climate change need to resolve all the relevant
feedback processes.

* Example: Tropical instability waves (TIWs)

* Not well-resolved in IPCC-AR4 models and their impact is unexplored.

* So we need to resolve them by downscaling.
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Model and experiments

Scripps Coupled Ocean-Atmosphere Regional Model
(Seo et al. 2007, J. Climate)
Atmosphere: Regional Spectral Model (Scripps RSM)
Ocean: Regional Ocean Modeling System (ROMS)
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Simulation of present-day climate
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* Reduced warming in the equator
* Intensified cross-equatorial meridional winds

and surface divergence
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Depth

Depth

Why reduced waring in cold tongue!?
-> Eg., Change in vertical temperature advection within cold tongue
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(b) - <w>dr/dz* ocean dynamical thermostat (Clement et al. 1996)
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thermostat in the Pacific
and the Atlantic.




Change in equatorial zonal currents and equatorial instability
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Change in atmospheric circulation =¥ changes in ocean
circulation =¥ equatorial dynamic instability

Barotropic convergence rate
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* Barotropic and
baroclinic convergence
are dominant energy
sources for the TIWs.

* Both BT and BC are
strengthened under the
environmental changes
associated with global
warming



Strengthening of TIWs (20-40 day band-pass filtered EKE and SST variance)
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cold season (~30%).
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Annual mean mixed layer ocean heat budget (30°W-10°W)

(b) GW-CTL: EDDY AND UPW
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* Equatorial upwelling (cooling) increases due to the increased vertical
velocities associated with the surface divergence. cf. the tropical Pacific.

* Net eddy heat flux by TIWs is warming in CTL and increases under global
warming forcing, damping the effect of increased upwelling.



Summary of Part |

* Exploratory research: The first coupled downscaling of climate change scenarios

* Downscaling captures equatorial currents and mesoscale variabilities

 Upwelling increases. Currents intensify. TIWs strengthen.
Impact spatial pattern of mean state warming.

* Need to resolve high-freq. processes in the model for global warming
research.

* Challenge: Drift in mean state in a long-term integration.

* Need_a consistent nudging technique for large-scale circulations both of the
ocean and atmosphere.



2. Impact of ocean state on TC intensity

—> Hurricane Katrina



Rapid intensification over high dynamic topography:
SST alone or upper ocean heat content?
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* Satellite altimeter data indicate that KKatrina
intensified over areas of anomalously
high dynamic topography rather than
areas of unusually warm surface waters.

e “SST+2°C” suggests ~|0mb; cf, 50 mb
increase during Rl period over warm eddy.

* How much of intensification of Katrina
in 2005 was due to ocean impact (SST,
D26, UOHC)? Can we quantify this?
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Coupled experiment: Scripps Coupled Ocean-Atmosphere Regional Model

> ATM = - RSM (NCEP2 6hrly) + ROMS (ECCO kf066b 10-daily 1°X1°)
RSM « SST ¢ ROMS | « |5km ROMS + |5 km RSM with matching grids
* |-hourly coupling based on Fairall et al. (1994)
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ASLP (each year minus 2005) after 74 hrs from initialization
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* The same Katrina of 2005, is
coupled to ocean states of
different years (1993 to 2008).

6 ® Katrina is generally weaker
compared to 2005.

* |ndicating that 2005 ocean
state was favorable to the
intensification of Katrina.

- We have to look at the
-8 oceanic initial conditions.
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Sensitivity of Katrina intensity to ocean states in different years
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SSH [cm]

Interannual variability of
ECCO D26 is
underestimated.
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* Interannual variability of D26/ B e o 150
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Alter D26 in initial conditions without changing SST
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* Alter depth of 26°C isotherm, increasing/
decreasing the heat content of the ocean.

* +30 m change in D26 gives >15 mb
change in SLP in 2005 => Corresponds
to 30% of SLP reduction in CTL case.



SLP [mb]

Storm intensities in sensitivity experiments

1993-2008: 7 experiments each year (a) Min SLP
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* TC intensity is negatively correlated with D26.
* Variability is greater in warmer ocean conditions than colder ocean conditions.
=> Sensitivity of storm intensity is greater for warmer ocean.
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* Interannual SST variation is negatively correlated to storm

~ intensities; the range of SLP sensitivity is ~5-15 mb depending
~on D26.

~ « However, the same SST can cause large SLP variation

- depending on D26.

“* Interannual D26 variation has an incorrect correlation with
~the SLP

~* However, when interannual D26 variability is increased to
“match the observations, then SLP has a robust negative
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e UOHC reflects these two features.



Summary of Part 2

* For strong TCs, UOHC (D26+SST) is an useful predictor, than SST alone, for
the intensification.

* Inclusion of dynamic topography in the statistical prediction model improves
intensity forecast; NHC (up to ~20%) and JTWC (~1%).

* Ocean dynamical topography may give wide range of predictability of intense
TCs from weekly to interannual.

* In this set of experiments, D26 produces wider ranges of intensity response
of TCs than SSTs.

* Since an intense TC interacts with ocean more strongly, the estimate here
is likely higher with stronger storms -- work in progress to add realistic
initial maximum wind speed.

* Need better oceanic initialization; other oceanic analyses products with
better information of dynamic topography.



Outlook

* Understanding of regional processes in a changing climate is
important.

* The US west cost and other coastal upwelling regions are good
initial targets because of important interactions involving ocean
dynamics, coastal meteorology, air-sea coupling and bio-
geochemistry.

* As the WREF is being embedded within CCSM to produce stronger
TGCs, it is important to provide ocean feedback on more appropriate
spatial scales (e.g., reduced self-induced cooling).

* We need the generalized oceanic nested grids within POP in
coordination with WRF/CAM for key regions of cyclogenesis of
the global ocean.
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