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Amplified seasonal cycle in hydroclimate over the
Amazon river basin and its plume region
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The Amazon river basin receives ~2000 mm of precipitation annually and contributes ~17%

of global river freshwater input to the oceans; its hydroclimatic variations can exert profound

impacts on the marine ecosystem in the Amazon plume region (APR) and have potential far-

reaching influences on hydroclimate over the tropical Atlantic. Here, we show that an

amplified seasonal cycle of Amazonia precipitation, represented by the annual difference

between maximum and minimum values, during the period 1979–2018, leads to enhanced

seasonalities in both Amazon river discharge and APR ocean salinity. An atmospheric

moisture budget analysis shows that these enhanced seasonal cycles are associated with

similar amplifications in the atmospheric vertical and horizontal moisture advections. Hier-

archical sensitivity experiments using global climate models quantify the relationships of

these enhanced seasonalities. The results suggest that an intensified hydroclimatological

cycle may develop in the Amazonia atmosphere-land-ocean coupled system, favouring more

extreme terrestrial and marine conditions.
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The Amazon river basin (delineated by the black contour in
Fig. 1a) receives ~2000 mm of rainfall annually1. This vast
amount of precipitation feeds the Amazon river, ranked as

the world’s largest river in terms of annual discharge2. The
Amazon river discharge contributes ~17% of global river fresh-
water input to the ocean2, significantly affecting the physical and
biogeochemical upper ocean properties in the coastal and
neighboring oceans3–7. One prominent feature is the so-called
Amazon plume region (APR), which is characterized by relatively
low ocean salinity3,4,8 and high nutrients brought by the Amazon
river discharge3,4,9,10. Observational evidence suggests that high
nutrient contents from the Amazon river discharge help sustain
high marine productivity in the APR, with the maximum chlor-
ophyll content concentrated in the upper 5-m ocean3. In addition,
the mixing of supersaturated Amazon freshwater with under-
saturated surface ocean water results in a net sink of atmospheric
carbon dioxide within the APR11,12. Therefore, the variability of
Amazon river discharge can impact marine biogeochemistry,
productivity, and the carbon cycle within the APR and sur-
rounding areas13.

The low salinity water in the APR also significantly increases
the upper ocean stratification, creating a thick barrier layer that

inhibits the mixing of cold thermocline water into the surface
waters12. As a consequence of reduced mixing, more heat is
trapped in the upper ocean4,8,14–16. Due to the APR’s areal extent
spanning from the Amazon river mouth near the Equator to the
East Caribbean Sea (red box in Fig. 1a, see “Methods” for the box
definition), the enhanced near-surface heat storage in the APR
associated with the barrier layer dynamics provides favorable
surface conditions for hurricane genesis over the broad regions of
the tropical western Atlantic8,15. Moreover, the variability of
Amazon freshwater and resultant ocean salinity changes have
been suggested to affect tropical Atlantic air–sea interactions17,18
and the variability of the Atlantic intertropical convergence zone
(ITCZ)19, regional sea-level height changes20–22, as well as to
exert potentially far-reaching impacts on the Atlantic meridional
overturning circulation (AMOC)23. Thus, understanding the
mechanisms for changes in the Amazon river discharge and the
associated upper ocean stratification in the APR is important not
only for the Atlantic hurricane forecasts but also for improved
understanding of basin-scale climate variability.

Recent studies have found that the Amazonia hydro-
climatological cycle, manifested as the seasonality changes in
precipitation and Amazon river discharge, has become intensified
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Fig. 1 Relationships between the seasonal cycles in Amazonia precipitation, Amazon river discharge, and Amazon plume region (APR) ocean salinity.
a The geographic domain of Amazon river basin (black contour line) and APR (red box). The color shading over the ocean represents annual mean 5-m
ocean salinity with 34.5 PSU countered as magenta, and the black arrows denote annual mean 5-m ocean current velocities. The magenta and blue stars
denote the location of the Obidos and Ciudad Bolivar gauge stations, where Amazon and Orinoco river discharges were recorded, respectively. b Long-term
mean (1979–2018) of observed precipitation averaged over the Amazon river basin in each month. Note that the mean TRMM precipitation is averaged
over 1998–2018. c Long-term mean of Amazon river discharge (1979–2018) at Obidos and Dai and Trenberth river discharge (1979–2014) in each month.
d Long-term mean of 5-m ECCO4 (1992–2017), GECCO2 (1979–2016), ORAS5 (1979–2018), SODA3.3.1 (1980–2015), and EN4 (1979–2018) ocean
salinity averaged over the APR in each month. The error bars in b, c, and d indicate the standard deviations of each month throughout the analysis period.
The geographic map is produced by Python Cartopy package77.
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during the past few decades24–26 and resulted in increased like-
lihood of extreme terrestrial events, such as droughts and
floods24,26,27. Ocean salinity in the APR has also been affected by
the seasonality changes in the Amazonia hydroclimatological
cycle4,7,28. However, it remains unclear if the enhanced pre-
cipitation seasonal cycle has intensified the seasonalities of the
river discharges and APR ocean salinity by increasing the peaks
and deepening the troughs. This study aims to examine the causal
link between the changes in the amplitude of the seasonality of
the Amazonia hydroclimatological system and APR ocean salinity
during the period 1979–2018, using observations, reanalysis, and
ocean-state estimate products. The effect of seasonality changes is
further quantified using a hierarchical global climate modeling
approach.

Results
Enhanced seasonalities in observations and reanalysis data. We
first examine the monthly climatological values of precipitation,
Amazon river discharge, and APR ocean salinity during the
period 1979–2018 (Fig. 1b–d) to illustrate their seasonal cycle
linkage. The area-averaged Amazonia precipitation shows the
highest values during January–February–March and the lowest
during July–August–September (Fig. 1b). Only small differences
appear among different observational precipitation datasets
(Fig. 1b), indicating the robustness of the estimated annual cycle
for the Amazonia precipitation reported in this study.

Following the peak precipitation in March, the Amazon river
discharge (expressed as volume transport in m3 s−1), observed at
Obidos station (magenta star in Fig. 1a), reaches its highest value
in June (Fig. 1c). Similarly, the lowest precipitation in August
leads to the lowest level of river discharge in November. This 3-
month delayed response of the river discharge to precipitation is a
prominent hydrological feature in the Amazon river basin2.

The seasonal cycle of the near-surface (~5 m below the sea
surface) ocean salinity in the APR from multiple ocean-state
estimate products shows the freshest values in May–June–July
and the saltiest in December–January–February (Fig. 1d), which
largely follows the seasonal cycle of the Amazon river discharge
(Fig. 1c). Although the magnitude of the seasonal cycle varies
with the chosen datasets, these ocean-state estimate datasets agree
that the APR ocean salinity exhibits a similar seasonal evolution
to the Amazon river discharge with no apparent lag. The seasonal
cycles of APR ocean near-surface salinity from the 6-year soil
moisture and ocean salinity (SMOS, 2011–2016)29 and 3-year
Aquarius (2012–2014)30 satellite observations have similar
characteristics (Supplementary Fig. 1).

The above results suggest that the atmosphere, land, and ocean
within and near the Amazon river basin are closely connected
through their seasonal cycle characteristics and lag relationships.
The annual maximum and minimum values of Amazon
precipitation during 1979–2018 indicate that the wet seasons have
become wetter and the dry seasons’ drier (Fig. 2a). A significant
increase in the maximum values and decrease in the minimum
values over the analysis period result in overall significant (at 5%
level) increasing trends in the precipitation seasonality (Fig. 2b).
The increasing trend of the seasonality averaged across the Global
Precipitation Climatology Project (GPCP)31, Global Precipitation
Climatology Centre (GPCC)32, and Precipitation Reconstruction
over Land (PREC/L)33 observational datasets is +0.35 (±0.05) mm
day−1 decade−1. This represents ~6% of the mean seasonality in
the Amazon precipitation (~6 mm/day, Fig. 1b). Similar increasing
trends of seasonality can be found using Tropical Rainfall
Measuring Mission (TRMM)34 and Climate Prediction Center
Merged Analysis of Precipitation (CMAP)35 datasets (Supplemen-
tary Fig. 2a–d).

Similarly, increased seasonality in the Amazon river discharge,
due to the increased maximum and decreased minimum values, is
also found (Fig. 2c, d). The trend of the increased seasonality in
Amazon river discharge is ~1.3 × 104 m3 s−1 decade−1, represent-
ing about 9% of its mean seasonality (~1.4 × 105 m3 s−1, Fig. 1c).
We also examine thirteen other river discharge datasets available
within the Amazon river basin (Supplementary Fig. 3), and ten of
them show increasing trends throughout the Amazon sub-basins
(Supplementary Fig. 4), although the temporal coverages of some
river discharge data are too short of providing robust trend
estimates (e.g., Supplementary Fig. 4e, i).

Following the enhanced seasonality in the Amazon river
discharge, the seasonality trends in APR 5-m ocean salinity
(averaged over the red box in Fig. 1a) have also increased by
~2.89 × 10−2, 1.82 × 10−2, and 1.23 × 10−1 PSU decade−1 for the
German contribution to ECCO version 2 (GECCO2)36, Estimat-
ing the Circulation and Climate of the Ocean project version 4
(ECCO4)37, and Simple Ocean Data Assimilation version 3.1.1
(SODA3.3.1)38 products, respectively (Fig. 2f, h). However, we
find decreasing trends in the Ocean Reanalysis/analysis version 5
(ORAS5)39 and EN440 products (Fig. 2h). The discrepancy
among ocean salinity products is likely related to different data-
processing or assimilation procedures, and quality and sampling
biases of input data (see discussion in “Methods”). The trend
averaged over five products is ~1.44 × 10−2 PSU decade−1,
which accounts for only ~1% of the mean seasonality (~1.38 PSU,
Fig. 1d). However, this trend increases to 5.66 × 10−2 PSU
decade−1, ~4% of the mean seasonality, when the three products
that show an increasing seasonality trend are averaged (though
this estimate is dominated by the increasing trend in the
SODA3.3.1 product, red line in Fig. 2h). We also used five
gridded ARGO products41 to determine recent (post-2001)
changes in APR ocean salinity seasonality (see Supplementary
Fig. 5b); the average of the five available gridded ARGO datasets
shows an unambiguous increasing trend (rightmost bar in
Supplementary Fig. 5b).

To understand the underlying mechanisms for the seasonal
cycle changes, we consider the vertically integrated atmospheric
moisture budget (see “Methods”), averaged over the Amazon
river basin using multiple reanalysis products. The net increasing
trend in precipitation seasonality (Fig. 2b) is found in all the
reanalysis datasets (Fig. 3a), which are largely attributed to the

enhanced vertical moisture advection (i.e., ! ω ∂q
∂p

D E
, Fig. 3d) and

secondarily to the enhanced horizontal moisture advection (i.e.,
! ~v " ∇qh i, Fig. 3c). In contrast, the evapotranspiration (i.e., E,
Fig. 3b) and residuals (i.g., δ, Fig. 3e) counteract the advection
effects. The trend toward increasing seasonality in vertical
moisture advection is ~0.52 ± 0.15 mm day−1 decade−1, which
contributes to precipitation of ~0.36 ± 7.15 mm day−1 decade−1

and is larger than the horizontal moisture advection of 0.16 ±
0.06 mm day−1 decade−1. Further decomposition of the vertical
moisture advection shows that the dynamical component

(! ω0 ∂q
∂p

D E
, 0.45 ± 0.15 mm day−1 decade−1, Fig. 3g) contributes

more strongly than the thermodynamic component (! ω ∂q0

∂p

D E
,

0.07 ± 0.03 mm day−1 decade−1, Fig. 3f). Such increased
seasonality in the dynamic component is related to the vertical
motion (Fig. 3i) that favors increased seasonality in convective
activity above the Amazon river basin, while that in the
thermodynamic component is associated with the increasing
atmospheric moisture content (Fig. 3j).

The precipitation and evapotranspiration seasonality changes
over the APR region should also affect the local ocean salinity.
Thus, we perform the same moisture budget analysis over the
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APR (red box in Fig. 1a), but find no robust and consistent trends
in seasonalities of precipitation and evapotranspiration compared to
that of the APR ocean salinity (Supplementary Fig. 6). The
precipitation seasonality has a negative trend, while that of
evapotranspiration has weakly increased, neither of which can
account for the observed robust increasing trend in the APR ocean
salinity seasonality. This leaves the increased seasonality in river
discharge as a sole source for the observed change in ocean salinity
seasonality, although it could be modulated by ocean advection and
vertical mixing processes. In addition, the Orinoco river discharge
may influence the APR ocean salinity8; however, we find its effect is
less important than that of the Amazon river discharge, as the

seasonality trend in the Orinoco river discharge has decreased
before 2000 and weakly increased (2.1 × 103m3 s−1 decade−1) after
mid-2000 (Supplementary Fig. 7).

Climate model sensitivity experiments. We conduct two sets of
historical global climate model experiments during 1979–2009
(the availability of the Coordinated Ocean-ice Reference Experi-
ments Phase 2 project, CORE-II, forcing42 limits the simulation
period, see “Methods”) to single out the effects of Amazonia
precipitation and Amazon river discharge seasonality changes.
The experiments also help address the causality. The first set uses
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a global land model with increased seasonality in the precipitation
forcing by a factor of 1.5 and 1.75 during the 1979–2009 period
over the Amazon river basin (Fig. 4a and see “Methods”). In
response to the enhanced precipitation seasonality trend, we find
a nearly linear response in the seasonality trend of the Amazon
river discharge (Fig. 4b). The relative change in the river dis-
charge seasonality is slightly higher than that in precipitation
seasonality; that is, the precipitation seasonality increases by a
factor of 1.75, whereas that of the river discharge increases by a
factor of 1.87 (Fig. 4b). This runoff intensification effect is likely
attributed to nonlinear river discharge responses to precipitation
intensity identified in a previous study27.

To test the robustness of the ocean salinity seasonality
response, given the discrepancy shown in the ocean-state estimate
products (Fig. 2f, h), we conduct the second set of experiments
using a global ocean model forced with varied seasonality in
Amazon river discharge (Fig. 4c and see “Methods”). The APR 5-
m ocean salinity seasonality (averaged over the red box in Fig. 1a)

also increases nearly linearly as the river discharge seasonality
increases (Fig. 4d). It should be noted that the total amount of
Amazon freshwater input in each experiment remains the same
by our experimental design (see “Methods”); that is, no additional
freshwater is added to the model when changing its seasonality.
We further analyze 12 CORE-II ocean-only hindcast simulations
forced with the same CORE-II forcings, including precipitation
and river discharge from 1979 to 2009 (see “Methods”), and
obtain overall increased APR ocean salinity seasonality trends
(Supplementary Fig. 5a). The above hierarchical historical climate
model experiments and CORE-II simulations, therefore, lend
support to the increased APR salinity seasonality trends found in
GECCO2, ECCO4, and SODA3.1.1 ocean-state estimate
products.

The enhanced seasonality in the ocean salinity can affect the
ocean physics and dynamics within the APR. Thus, we further
examine the trends in the seasonalities of the APR area (Fig. 5a,
defined as the area where ocean salinity are less than 34.5 as
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denoted by the magenta contour line in Fig. 1a), the 5-m ocean
temperature (Fig. 5b), the upper ocean stratification (i.e.,
buoyancy frequency, N2, which also indicates the strength of
vertical mixing, Fig. 5c), and the barrier-layer thickness (Fig. 5d)
from the ocean model experiments. In order to better characterize
the localized changes, the averaged values shown in Fig. 5 are
taken over only the regions where the 5-m ocean salinity is <34.5
PSU (an alternative definition of APR area) rather than averaged
over the APR box as those presented in Fig. 4). However, both the
areal metrics produce very similar results (c.f., Supplementary
Fig. 8 and Fig. 4d). The seasonality trends of the APR area and
vertical mixing strength again respond nearly linearly to that of
the Amazon river discharge, whereas the trends of the 5-m ocean
temperature and barrier-layer thickness seasonalities show more
sensitivity, with larger trend increases from ×1.5 to ×1.75
experiments. These features indicate that the vertical mixing
process is dominated by the effect of ocean salinity change
associated with the Amazon river freshwater change, manifested
as more linear behaviors, but the ocean temperature and barrier-

layer thickness are also affected by other factors. It is possible that
the temperature responses are more affected by the variability of
internal ocean dynamics (e.g., baroclinic eddies or the bifurcation
of the North Brazilian Current)43,44 manifested as the larger
spreads among five ensembles in each experiment (Fig. 5b). In
addition, the Amazon river discharge temperature is not
accounted for in the ocean model configuration, which may also
contribute to the APR ocean temperature response.

Discussion
This study finds that an amplified seasonal cycle of Amazonia
precipitation during the period 1979–2018 leads to enhanced
seasonalities in both Amazon river discharge and APR ocean
salinity, using a combination of observations and reanalysis
datasets. Hierarchical climate model experiments support the
observed seasonality changes and shed light on the sole effects of
changing seasonalities in the Amazonia precipitation and Ama-
zon river discharge. While previous studies mainly focused on
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Amazon river runoff forcing used to force the ocean model experiments. In a, c, the dashed lines are the linear fits used to determine trends. d similar to b,
but for seasonality changes in APR ocean salinity in the ocean model experiments. The black star is the APR salinity seasonality trend, averaged over five
spin-up cycles.
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specific dry or wet seasons without taking into account the sea-
sonality changes in a comprehensive fashion24–26, our results
provide a new route to further study the Amazonia hydro-
climatology and the occurrence of extreme events in the Amazon
river basin and APR.

Within the APR, we find the enhanced seasonality of ocean
salinity is tied closely with the enhanced seasonalities in the plume
area, upper ocean stratification, near-surface ocean temperature,
and barrier-layer thickness in our ocean model experiments
(Fig. 5). These changing ocean properties are important in that
they could affect the carbon cycle and marine biogeochemistry
within the APR more significantly as a consequence of increased
seasonality of Amazon river discharge7. It is noted that the
increasing precipitation trend in the wet season (mostly
January–February–March) contributes more than that in the
dry season (mostly July–August–September) to the increasing
seasonality trend (Fig. 2a), which is also the case for Amazon river
discharge (Fig. 2c) and APR ocean salinity (Fig. 2e, g). Presumably,
warmer near-surface ocean temperature and thicker barrier
layer in the APR in the “fresher” season (mostly May–June–July)
could offer favorable surface ocean conditions for hurricane
genesis via barrier layer dynamics4,8,14,15. Previous studies
using statistical and dynamical hurricane forecast framework
showed that the inclusion of upper ocean heat content provides
longer and better predictability of hurricane intensity45–47.
The results presented in this study, therefore, have important
implications for hurricane forecasting. However, the near-linear
relationship in our modeling results does not include the
atmosphere–land–ocean feedback processes. There may exist
limitations to tie the seasonality changes of Amazon river dis-
charge and APR ocean salinity, and unrealistic seasonality
responses. In addition, previous studies have shown that the
Amazon river discharge can affect tropical Atlantic air–sea

interactions17, regional sea-level height20–22, and have potentially
far-reaching impacts on the AMOC23.

The atmospheric moisture budget analysis reveals that the
“wet-get-wetter-and-dry-get-drier” phenomenon in the tropical
precipitation due to anthropogenic global warming48 may con-
tribute to the seasonality change. The “wet-get-wetter-and-dry-
get drier” precipitation signal can result in a host of consistent
seasonality responses in the Amazonia atmosphere–land–ocean
coupled system. The enhanced vertical velocity seasonality
(Fig. 3i) may reflect changes in the location and strength of the
Atlantic ITCZ that are related to changes in the local sea-surface
temperature gradient in the tropical Atlantic49.

It should be noted that the decadal and multidecadal natural
modes of variability, such as Pacific decadal variability (PDV),
interdecadal Pacific variability (IPV), or Atlantic multidecadal
variability (AMV), are possible large-scale drivers of the pre-
cipitation seasonality changes at longer timescales50,51, which
have been shown by some studies to be more influential than
anthropogenic forcing in the Amazon river basin in observations
and climate model simulations52,53. For example, recent dry
season droughts across the Amazon river basin have been
attributed to the AMV54,55. We find that the AMV, PDV, and
IPV indices and the seasonality of the Amazon river discharge
time series, after applying 11-year running average, are correlated
after 1970 (R= 0.58 for AMV index, R=−0.81 for PDV index,
R=−0.64 for IPV, all of which are larger than 0.41, critical value
at 99% significance level, see Supplementary Fig. 9), indeed sug-
gesting that part of the increased Amazon river discharge sea-
sonality trend in the past 30 years can be attributed to low-
frequency Atlantic and Pacific sea-surface temperature variations.
In addition, changes in hydropower dam construction56, defor-
estation57, and groundwater dynamics58 may have also affected
the hydroclimatology of Amazonia and consequently river
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Fig. 5 Sensitivity of the trends in Amazon plume region (APR) size, ocean temperature, buoyancy frequency (N2), and barrier-layer thickness in
response to seasonality changes in Amazon river runoff forcings in ocean model experiments. a Seasonality changes in the size of APR, defined as the
region where 5-m ocean salinity is <34.5 PSU. b Seasonality changes in the 5-m ocean temperature averaged over the region where 5-m ocean salinity is
<34.5 PSU. c, d similar to b, but for seasonality changes in buoyancy frequency and barrier-layer thickness.
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discharge seasonality. All these effects are not considered in this
study. To quantify the relative and combined effect of all local
versus remote forcings and natural versus anthropogenic factors
would require significant modeling efforts, including a series of
well-designed global climate model experiments. This will be left
for a future study.

Methods
APR and the Amazon river basin. The APR is chosen according to the extent to
which the effect of Amazon river freshwater can reach in terms of overall mean
state8. Previous studies showed that the size of the freshwater plume is determined
by the combination of the region of relatively low salinity extending from the
Amazon river mouth (magenta contour line in Fig. 1a) and strength of the pre-
vailing North Brazilian Current (denoted by black arrows near coasts in Fig. 1a); it
carries the freshwater released at the Amazon river mouth northwestward to the
Caribbean4,7, though sometimes the North Brazilian Current turns eastward to
bring freshwater eastward43. The APR we used in this study (red box in Fig. 1a)
covers not only the near-coastal area but also this bifurcation branch of ocean
circulation. The APR is used to calculate the area-averaged near-surface ocean
salinity time series. We also consider the region with ocean salinity <34.5 PSU
following a previous study8 to define APR (magenta contour line in Fig. 1a), which
produces similar results (c.f., Fig. 4d and Supplementary Fig. 8).

We define the Amazon river basin (black contour line in Fig. 1a) as the
catchment upstream of the Obidos station based on ArcGISV10.1, which is
different from the conventional Amazon river basin based on the Amazon river
mouth near the Equator (black contour in Supplementary Fig. 3). Because the
conventional definition includes river discharge downstream of the Obidos station,
this adjusted river basin is used to more accurately calculate the area-averaged
Amazonia precipitation time series consistent with river discharge observed at the
Obidos station. We compare area-averaged precipitation annual cycles using this
adjusted and conventional river basin (black contour line in Supplementary Figs. 3
and 10a). Slightly less precipitation using the adjusted river basin occurs in the wet
season, and more precipitation from spring to fall. We also compare the absolute
difference ratio between them and find the ratio ranges from 2.5% to 21%
(Supplementary Fig. 10b). The correlation coefficient between their monthly time
series during 1979–2018 is as high as 0.99. These results using the adjusted river
basin largely capture the amount and variability of those using the conventional
Amazon river basin.

The observational, reanalysis, and ocean-state estimate datasets. The
monthly Amazon river discharge observed at Obidos gauge station (#17050001,
1.9225°S, and 55.6753°W, magenta star in Fig. 1a) for 1968–2018 and the Orinoco
river discharge data observed at Ciudad Bolivar gauge station (#408000000,
08.1536°N, and 063.5361°W, blue star in Fig. 1a) for 2003–2018 are obtained from
SO HYBAM material transport datasets (formerly Environmental Research
Observatory, http://www.ore-hybam.org/). Other river discharge data within the
Amazon river basin are also obtained from the HYBAM website (Supplementary
Figs. 3 and 4). We also use the Amazon river and Orinoco river discharge data
from the Global River Flow and Continental Discharge Data Set during 1979–2018
(http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/)59, which provides river
discharge data for the world’s 925 largest rivers primarily based on gauge obser-
vations with the assistance of model simulations.

For the observational monthly precipitation datasets, we use GPCP version 6
(https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html)31,60, GPCC (https://
www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html)32, and Precipitation
Reconstruction over Land (PREC/L, https://www.esrl.noaa.gov/psd/data/gridded/
data.precl.html)33 for 1979–2019. We also use observational precipitation datasets
from the TRMM version 7 (https://pmm.nasa.gov/data-access/downloads/trmm)34
and the Climate Prediction CMAP (https://www.esrl.noaa.gov/psd/data/gridded/
data.cmap.html)35. Multiple reanalysis products during 1979–2018 are used when
calculating the atmospheric water moisture budget (see Supplementary Tables 1
and 4–8). We have compared the variability of reanalysis precipitation datasets
with the observed ones. Their characteristics are very similar (c.f., Figs. 2b and 3a).

When calculating the effect of evapotranspiration61,62, we use multiple
reanalysis products (Supplementary Table 4). We also use global monthly
evapotranspiration fields from the Global Land Evaporation Amsterdam Model
(GLEAM, during 1980–2018, https://www.gleam.eu/)63,64, which assimilates a
series of land surface and satellite observations. Their results are largely similar
(c.f. Fig. 3b and Supplementary Fig. 2f).

Several monthly observational and ocean-state estimate products for the salinity
field at the surface and 5 m below the ocean surface used in this study include the
SMOS (during 2011–2016, https://www.esa.int/Our_Activities/
Observing_the_Earth/SMOS)29 and the U.S./Argentina Aquarius/SACD (during
2012–2014, https://aquarius.oceansciences.org/cgi/index-noflash.htm)30,
Estimating the Circulation and Climate of the Ocean project version 4 (ECCO4,
during 1992–2017, www.ecco-group.org)37 and the German contribution to ECCO
version 2 (GECCO2, during 1979–2016, https://icdc.cen.uni-hamburg.de/1/daten/
reanalysis-ocean/gecco2.html)36, EN4.2.1 (EN4 hereafter, during 1979–2018,
https://www.metoffice.gov.uk/hadobs/en4/en4-0-2-profile-file-format.html)40,

Ocean Reanalysis/analysis version 5 (ORAS5, during 1979–2018, https://www.
ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis)39, and Simple Ocean
Data Assimilation version 3.1.1 (SODA3.1.1, during 1980–2015, http://www.soda.
umd.edu/)38. We also use five interpolated ARGO products (see the first four bars
from the left in Supplementary Fig. 5b, http://www.argo.ucsd.edu/Gridded_fields.
html)41.

We examine the data quality of EN4 according to its salinity observation weight
and uncertainty in the APR (Supplementary Fig. 11). Despite the increasing
observation weight and decreasing salinity uncertainty after the late 1990s in the
APR; low observation weight and large uncertainty before the mid-1990s may
contribute to the discrepancy of APR salinity seasonality between EN4 and other
products. In addition, different assimilation process in generating the products may
also be a factor.

Before calculating the area-averaged values, we only regrid the field from
ORAS5 and GECCO2 product to ~1° × 1° using nearest interpolation because the
former is output in T-grid and the latitude grid of the latter varies in different
variables. We do not perform interpolation for other datasets.

Atmospheric moisture budget analysis. We utilize a vertically integrated
moisture budget analysis to explore the mechanisms behind the enhanced pre-
cipitation seasonality. A similar analysis has been performed in many studies to
examine global and regional precipitation changes27,65 on various timescales (i.e.,
daily, monthly, and interannually). The moisture budget is formulated as

P ¼ ! ω
∂q
∂p

! "
! ~v " ∇qh i þ E þ δ; ð1Þ

where P denotes precipitation,~v the horizontal velocity field, q specific humidity, E
evapotranspiration, δ the residual term, ω is the pressure velocity, and <> mass
integration throughout the atmospheric layers (surface to model top). The first

term on the right-hand side (! ω ∂q
∂p

D E
) represents the vertical moisture advection,

while the second term (! ~v " ∇qh i) represents the horizontal moisture advection

(! ~v " ∇qh i). When vertical integration is performed on ! ω ∂q
∂p

D E
, the pressure

velocities at the surface and at the model top are assumed to be zero. Note that the
residual term (δ) includes transient eddy and nonlinear effects.

The vertical moisture advection can be further divided into:

! ω
∂q
∂p

! "0
ffi ! !ω

∂q0

∂p

! "
! ω0 ∂!q

∂p

! "
; ð2Þ

where ðÞ indicates seasonal averaging from 1980 to 2018 and ()′ denotes the
seasonal anomaly from the seasonal mean in the wet and dry seasons. We disregard

the nonlinear term ! ω0 ∂q0
∂p

D E
. This decomposition allows us to examine the

dynamical and thermodynamical contributions to precipitation changes. The first
term of the above equation on the right-hand side represents the thermodynamical
term, while the second term, the dynamical term respectively follows previous
studies65–67. The unit of each term is kg s−1 m−2, which is equivalent to ml s−1.

Seasonality calculation and enhancement. Since this study focuses on the sea-
sonal averages of precipitation, river discharge, and APR ocean salinity, we take 3-
month averages before calculating their seasonality. The seasonality of the time
series with 3-monthly averaging is defined as the difference of its maximum value
minus its minimum value within 1 year in this study. Similar results can be
obtained without taking a 3-month average. We also calculate seasonality with the
difference between fixed wet and dry seasons (e.g., January–February–March
averaged precipitation minus July–August–September averaged precipitation based
on the climatological seasonal cycle, Fig. 1b), and obtain very similar results.

To enhance the seasonality for a given forcing field in climate model
experiments, we use a fast Fourier transformation (FFT) approach. We first apply
FFT on a target time series, and before applying inverse FFT to retrieve the
resultant time series, we multiply a targeted factor to enhance its amplitude. To
double the amplitude, for example, we choose the factor as 2. To demonstrate, we
consider a simple combined sine wave, sinð 2π360 xÞ þ sin 4π

360 x
# $

þ 5, which is shown
as blue line in Supplementary Fig. 12, while the time series that has been amplified
by a factor of 2 is shown as the red line. It is noted that the mean of the two time
series is exactly the same.

Global land model historical experiments. To test the sensitivity and quantify the
seasonality of Amazon river discharge changes in response to Amazonia pre-
cipitation seasonality changes, we use the Community Land Model version 4.5
(CLM4.5)63 under the Community Earth System Model (CESM) framework to
conduct land-only experiments with varying precipitation forcing seasonality. The
atmospheric conditions used to force the CLM4.5 hindcast experiments are con-
structed following a previous study64 using observational and reanalysis datasets
from 1948 to 2009. For the control simulation, we conduct a 62-year simulation
from 1948 to 2009 with corresponding forcings prescribed. We then repeat four
cycles with the same forcings to generate a total of five ensemble members. For the
“x1.5” (“x1.75”) experiment, we conduct another 62-year simulation from 1948 to
2009 cycling five times using the precipitation forcing seasonality increased by a
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factor of 1.5 (1.75) above the Amazon river basin. We only analyze the results from
1979 to 2009.

When we construct precipitation forcing with enhanced seasonality, due to the
fact that precipitation forcing is given in 6-h time intervals, we first take the
monthly average from the 6-h precipitation field and then perform FFT on the
monthly field to enhance the seasonality. We then add increased or decreased
values in 1 month back to the original 6-hourly precipitation forcing for the
experimental simulations. However, some resultant 6-h values can be less than
zero, which is not reasonable, so we set all negative values to zero. Although in this
way, the mean of the resultant precipitation forcing is not exactly the same as that
of the original precipitation forcing, we compare their mean values and find only a
small difference.

Global ocean model historical experiments. We conduct an ocean-only
experiment similar to the land-only experiment described above, but with the river
runoff forcing seasonality changed at the Amazon river mouth, to examine the
sensitivity of ocean salinity in the APR. We use the Parallel Ocean Program version
2 (POP2) under the CESM framework. The boundary conditions used to force
POP2 are prepared according to the Coordinated Ocean-ice Reference Experiments
Phase 2 project (CORE-II)42, which spans from 1948 to 2009. In the global river
runoff forcing field to drive the ocean model, we increase the river runoff at the
grid, where largest annual mean river runoff occurs in the South American con-
tinent, by a factor of 1.5 and 1.75 to construct runoff forcings for the “x1.5”
experiment and the “x1.75” experiment, respectively, using the FFT approach as
well. It is noted that the global river runoff forcing is constructed based on the Dai-
Trenberth’s dataset59, which is analyzed in Figs. 1 and 2.

Due to the fact that the ocean model requires a longer time to reach quasi-
equilibrium and to effectively reduce model drift in the historical ocean-only
simulations, a five-cycle spin-up simulation was suggested by previous studies68,69.
Therefore, we conduct five-cycle spin-up simulations with repeating boundary
conditions from 1948 to 2009 (black star in Fig. 4d). The control simulation is
continued from the spin-up run for another five more cycles to generate five
ensemble members, whereas the “x1.5” and the “x1.75” experiments are continued
from the spin-up runs for another five more cycles given river runoff forcings with
Amazon river runoff forcing seasonalities increased by a factor of 1.5 and 1.75,
respectively. We only analyze results from 1979 to 2009.

The original runoff and amplified seasonalities of river runoff are shown in
Fig. 4c. We choose the amplification factors in ocean model experiments in order
to prevent the amplified runoff value from being smaller than zero. It is noted that
the total river runoff released into the ocean is exactly the same in each experiment
because the monthly mean of runoff fields is the same, which is a direct result of
the FFT approach described above.

Coordinated Ocean-ice Reference Experiments Phase 2. Coordinated Ocean-ice
Reference Experiments Phase 2 (CORE-II) entails a set of coordinated historical
global ocean model experiments using different state-of-the-art global ocean
models developed by different modeling groups. The models are prescribed with
common forcings, including precipitation and river runoff from 1948 to 200942,70.
The boundary fluxes are computed following the same bulk formulae42. CORE-II
simulations provide a framework to investigate mechanisms of significant ocean
phenomena and their seasonal and decadal variabilities, including both forced and
internal variability. Therefore, CORE-II fits well for this study to examine whether
the increasing seasonality trend of near-surface ocean salinity in the APR is a
common feature in response to the observed precipitation and subsequent river
runoff seasonality changes in the Amazon river basin.

Supplementary fig. 5a shows that the near-surface ocean seasonalities in 12
CORE-II simulations are overall enhanced during 1979–2007 (we drop the last two
years because some models do not provide simulated results in 2008 and 2009),
which is consistent with the result found in the GECCO4, ECCO, and SODA3.1.1
ocean-state estimate products. The multi-model mean trend is about 0.054 PSU per
decade. The values of the increased seasonality trend are comparable to those in the
ocean state estimate products (~0.04 PSU per decade for GECCO2 and ~0.03 PSU
per decade for ECCO4), indicating that CORE-II simulations reasonably capture
the increased trends of ocean salinity seasonality and support our findings based on
ocean-state estimate products. For a comparison of interannual variability between
simulated long-term mean seasonal cycles, one is referring to a previous study42.
CORE-II simulation results are downloaded from the NCAR/NCEP Research Data
Archive (https://rda.ucar.edu/datasets/ds262.0/).

Natural variability indices. To assess potential linkages between the seasonality in
the Amazonia hydroclimatological system and natural variability, we consider the
AMV71, PDV72, and IPV73, as shown in Supplementary Fig. 9. The time series are
shown as 11-year running average to illustrate their decadal variability. The AMV
index and a tripole index representing IPV are downloaded from ESRL Physical
Science Division (https://www.esrl.noaa.gov/psd/data/timeseries/AMO/, and
https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI/), and the PDV index is
obtained from the Joint Institute for the Study of the Atmosphere and Ocean
(http://research.jisao.washington.edu/pdo/).

Near-surface ocean mixing and barrier-layer calculations. In order to examine
the responses of near-surface ocean physics and dynamics to Amazon river dis-
charge in the APR, we calculate the barrier-layer thickness and potential energy
following a previous study74. The barrier-layer thickness is defined as the iso-
thermal layer depth (ILD) minus the mixed layer depth (MLD) when the former is
deeper than the latter. If ILD is shallower than MLD, the barrier-layer thickness at
this grid is not considered. The MLD is calculated as σref+ Δσ, where σref is chosen
as 5 m and Δσ 0.1 kg m−3. The ILD is computed using the temperature difference
equivalence to 0.1 kg m−3 of density increase from the reference depth with the
salinity at the reference 5-m depth. We only consider grid points where the 5-m
ocean salinity is <35.4 PSU within the APR to better characterize the freshwater
plume following a previous study8, but similar results can be obtained without this
constraint. To characterize the near-surface mixing processes, we also calculate the
squared buoyancy frequency (in the unit of s−2), defined as:

N2 ¼ ! g
ρ0

∂ρ
∂z

;

where g is the gravitational constant, ρ0 is a reference density (1025 kg m−3), ρ is
density, and z is depth.

Statistical significance test. For a given time series, the statistical significance of
its trend is determined based on a Student’s t test with a null hypothesis that the
trend is zero75. If the P value is <0.05, the null hypothesis can be rejected with 5%
significance, and the trend is considered significant at the 5% level. We consider the
effective sample size when performing the t test to take into account the effect of
serial correlation. The effective sample size (ESS) is given as:

ESS ¼ N
1! RxRy

1 þ RxRy
;

where N is the length of time series, and Rx and Ry are the lag-1 autocorrelations of
time series x and y, respectively76.

Data availability
The monthly Amazon river discharge observed at Obidos gauge station and the Orinoco
river discharge data observed at Ciudad Bolivar gauge station are obtained from SO
HYBAM material transport datasets (formerly Environmental Research Observatory,
http://www.ore-hybam.org/). We also use the Amazon river and Orinoco river discharge
data from the Global River Flow and Continental Discharge Data Set (http://www.cgd.
ucar.edu/cas/catalog/surface/dai-runoff/). For the observational monthly precipitation
datasets, we use Global Precipitation Climatology Project version 6 (https://www.esrl.
noaa.gov/psd/data/gridded/data.gpcp.html), Global Precipitation Climatology Centre
(https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html), and Precipitation
Reconstruction over Land (https://www.esrl.noaa.gov/psd/data/gridded/data.precl.html).
We also use observational precipitation datasets from the TRMM version 7 (https://
pmm.nasa.gov/data-access/downloads/trmm) and the Climate Prediction Center Merged
Analysis of Precipitation (https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html).
Multiple reanalysis datasets are used: ERAI is obtained from ECMWF (https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim), MERRA from NASA
(https://gmao.gsfc.nasa.gov/reanalysis/MERRA/), JRA and JRA-55 from the Japan
Meteorological Agency and the Central Research Institute of Electric Power Industry
(https://jra.kishou.go.jp/JRA-55/index_en.html), NCEP_R2 from ESRL (https://www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html), and NCEP_CFSR from
NCAR/UCAR (https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-
reanalysis-cfsr). The Global Land Evaporation Amsterdam Model data are downloaded
from https://www.gleam.eu/. Several monthly observational and ocean-state estimate
products for the salinity field at the surface and 5 m below the ocean surface used in this
study include the soil moisture and ocean salinity (https://www.esa.int/Our_Activities/
Observing_the_Earth/SMOS) and the U.S./Argentina Aquarius/SACD (https://aquarius.
oceansciences.org/cgi/index-noflash.htm), Estimating the Circulation and Climate of the
Ocean project version 4 (www.ecco-group.org) and the German contribution to ECCO
version 2 (https://icdc.cen.uni-hamburg.de/1/daten/reanalysis-ocean/gecco2.html),
EN4.0.2 (https://www.metoffice.gov.uk/hadobs/en4/en4-0-2-profile-file-format.html),
Ocean Reanalysis/analysis version 5 (https://www.ecmwf.int/en/research/climate-
reanalysis/ocean-reanalysis), and Simple Ocean Data Assimilation version 3.1.1 (http://
www.soda.umd.edu/). We also use five interpolated ARGO products (http://www.argo.
ucsd.edu/Gridded_fields.html). Ocean-only simulations of Coordinated Ocean-ice
Reference Experiments Phase 2 are obtained from NCAR/UCAR (https://rda.ucar.edu/
datasets/ds262.0/). The AMV index and a tripole index are downloaded from ESRL
Physical Science Division (https://www.esrl.noaa.gov/psd/data/timeseries/AMO/, and
https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI/), and the PDV index is obtained
from the Joint Institute for the Study of the Atmosphere and Ocean (http://research.jisao.
washington.edu/pdo/). CORE-II simulation results are downloaded from the NCAR/
NCEP Research Data Archive (https://rda.ucar.edu/datasets/ds262.0/). ERAI and ERA5
datasets are downloaded from ECMWF (https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-interim and https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5). JRA-55 data are downloaded from JRA Project (https://jra.
kishou.go.jp/JRA-55/index_en.html#download). NCEP_R1 and NCEP_R2 are
downloaded from NOAA’s Physical Sciences Laboratory (https://psl.noaa.gov/data/
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gridded/index.html). The sensitivity climate model simulations are compiled on the
Zenodo data repository (https://doi.org/10.5281/zenodo.3939611). The geographic maps
in Fig. 1a and Supplementary Fig. 3 are produced by Python Cartopy package (https://
scitools.org.uk/cartopy/docs/latest/#)77.

Code availability
The codes that analyze the data and make figures are available on Y.-C. L.’s GitHub
website (https://github.com/yuchiaol/Amazon_river_seasonality).
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Supplementary Figure 1 | Seasonal cycles of surface or near-surface (5 meter) salinity from 

satellite observations. The time period of SMOS used in this study is 2011 to 2016, while that of 

Aquarius is 2012-2014. The error bars denote the standard deviations of each month throughout 

the respective analysis periods. 
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Supplementary Figure 2. | Evolution of maximum and minimum values within one year and 

seasonality for TRMM and CMAP precipitation and GLEAM Evapotranspiration. a, 

Maximum and minimum values of TRMM precipitation averaged over the Amazon river basin 

during the period 1998-2018. b, The seasonality (maximum minus minimum values) during the 

period 1998-2018. The solid (dashed) lines are the linear fit to inform the increasing (decreasing) 

trends. c-d and e-f are the same as a-b but for CMAP precipitation during 1979-2018 and GLEAM 

evapotranspiration during 1980-2018 respectively. 
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Supplementary Figure 3. | The locations of 13 gauge stations within the Amazon river basin. 

Magenta locations denote gauge stations with an increasing trend of seasonality, while the black 

locations denote those with a decreasing trend. The geographic map is produced by Python Cartopy 

package1. 
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Supplementary Figure 4. | The seasonality of 13 river discharges within the Amazon river 

basin. a, Atalaya Aval river. b, Borja river. c, Caracarai river. d, Fazenda Vista Alegre river. e, 

Francisco de Orellana river. f, Itaituba river. g, Labrea river. h, Manacapuru river. i, Nazareth river. 

j, Porto Velho river. k, Rurrenabaque river. l, Serrinha river. m, Tabatinga river. The red lines 

indicate the linear trend. 
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Supplementary Figure 5 | Trends of CORE-II and interpolated ARGO near-surface ocean 

salinity seasonality. a,  Seasonality trends of 12 CORE-II models. b, seasonality trends of five 

interpolated ARGO products. The error bars denote the standard deviations of models and ARGO 

products. 
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Supplementary Figure 6 | Atmospheric water moisture budget analysis on the seasonality 

changes during 1979-2018 within APR. The seasonality evolutions of observational precipitation 

(a), reanalysis precipitation (b), evapotranspiration (E) (c), horizontal moisture advection (-<!"⃗ ∙

%&>) (d), vertical moisture advection (-<' ()
(*>)  (e), residual (+) (f), thermodynamic component 

(-<', ()-
(*>) (g), dynamical component (- <'′ ()/(*>) (h), nonlinear component (-<'′ )-(*) (i), vertical 

velocity (	' ) (j), and total column water vapor (q) (k). The blue shadings are the range among 

reanalysis products used in the calculation and the red lines are the linear fits to inform trends. 
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Supplementary Figure 7 | Evolution of maximum and minimum values within one year and 

seasonality for Orinoco river discharge, and APR ocean salinity. a, Orinoco river discharge 

maximum and minimum values from HYBAM dataset. b, similar to a but using Dai-Trenberth 

dataset. c-d are the same as a-b but for Dai-Trenberth dataset. 
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Supplementary Figure 8 | 5-meter ocean salinity seasonality changes with APR defined as 

regions where salinity is less than 34.5 PSU. Seasonality trends of APR 5-meter ocean salinity 

seasonality in ocean model experiments.  
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Supplementary Figure 9 | Natural variability.  Comparisons for Amazon river discharge with 

AMV index (magenta line in a), PDV index (magenta line in b), and IPV index (yellow line in b). 

The blue line represents the seasonality of Amazon river discharge. The thick lines denote the 11-

year running average time series, while the thin lines the original time series. 
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Supplementary Figure 10. | Comparison of adjusted and conventional Amazon river basin. 

a, the seasonal evolution of TRMM precipitation averaged over the adjusted Amazon river basin 

(red line) and conventional one (blue line). b, the absolute difference between the two as a 

percentage.   
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Supplementary Figure 11. | EN4 5-meter salinity data quality in the APR. a, The salinity 

observation weight averaged over the APR. b, similar to a but for salinity uncertainty. 
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Supplementary Figure 12 | Idealised wave amplitude enhancement. The blue line is a 

combined sine wave sin( 56789 :) + sin =
>6
789 :? + 5, while the red line has its amplitude increased 

by a factor of 2. 
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Supplementary Table 1. Precipitation trends in mm day^-1 per decade (bold number: 5% 
significance) 

Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
GPCP 1980-2017 2.43x10-1 -1.49x10-1 3.91x10-1 
GPCC 1980-2017 1.70x10-1 -1.07x10-1 2.76x10-1 

PREC/L 1980-2017 2.24x10-1 -1.50x10-1 3.74x10-1 
ERA52 1980-2017 2.21 x10-1 -2.47 x10-1 4.68 x10-1 
ERAI3 1980-2017 6.52 x10-1 2.70 x10-1 3.82 x10-1 
JRA554 1980-2017 4.13 x10-1 1.77 x10-1 2.36 x10-1 

NCEP_R15 1980-2017 7.81 x10-1 3.77 x10-1 4.05 x10-1 
NCEP_R26 1980-2017 4.71 x10-1 1.79 x10-1 2.92 x10-1 
Multi-Mean 
Reanalysis 1980-2017 5.08 x10-1 1.51 x10-1 3.56 x10-1 

 
 

Supplementary Table 2. Amazon river discharge trends in m^3 s^-1 per decade (bold number: 
5% significance) 

Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
HYBAM 1980-2017 9.97x103 -2.76x103 1.27x104 

Dai & Trenberth* 1980-2007 1.09x104 -2.32x103 1.32x104 
          *missing Amazon river discharge data after 2007 in Dai & Trenberth 

 
Supplementary Table 3. Ocean salinity trends in PSU per decade (bold number: 5% significance) 

Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
GECCO2 1980-2015 1.76x10-2 -1.13x10-2 2.89x10-2 
ECCO4 1993-2016 -3.68x10-3 -1.45x10-2 1.82x10-2 
ORAS5 1980-2017 1.43x10-2 4.12x10-2 -2.72x10-2 

SODA3.3.1 1981-2014 -8.81x10-3 -1.52x10-1 1.23x10-1 
EN4 1980-2013 4.38x10-2 1.14x10-1 -7.04x10-2 

 
Supplementary Table 4. Evapotranspiration trends in mm day^-1 per decade (bold number: 5% 

significance) 
Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 

GLEAM 1981-2017 -1.71x10-1 1.12 -9.52x10-1 
ERA5 1980-2017 -8.88x10-4 4.65x10-3 -5.50x10-3 
ERAI 1980-2017 -5.29x10-2 6.16x10-2 -1.14x10-1 
JRA55 1980-2017 -1.47x10-1 7.10x10-2 -2.18x10-1 

NCEP_R1 1980-2017 -2.04x10-1 -3.84x10-3 -2.00x10-1 
NCEP_R2 1980-2017 -1.04x10-1 1.15x10-1 -2.20x10-1 

Multi-Mean 
Reanalysis 1980-2017 -1.02x10-1 4.97x10-2 -1.52x10-1 
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Supplementary Table 5. Horizontal moisture advection trends in mm day^-1 per decade (bold 
number: 5% significance) 

Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
ERA5 1980-2017 3.63x10-2 1.86x10-1 -6.90x10-2 
ERAI 1980-2017 -6.66x10-2 7.02 x10-3 -2.79x10-1 
JRA55 1980-2017 -7.59x10-3 5.97x10-1 -1.72x10-1 

NCEP_R1 1980-2017 -9.30x10-2 3.27x10-3 -2.20x10-1 
NCEP_R2 1980-2017 -6.15x10-2 2.10x10-2 -2.70x10-1 

Multi-Mean 
Reanalysis 1980-2017 -3.85x10-2 4.59x10-2 -2.02x10-1 

 
Supplementary Table 6. Vertical moisture advection trends mm day^-1 per decade (bold number: 

5% significance) 
Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
ERA5 1980-2017 1.61x10-1 -1.52x10-1 3.13x10-1 
ERAI 1980-2017 9.02x10-1 4.23x10-1 4.79x10-1 
JRA55 1980-2017 3.86x10-1 1.42x10-1 2.45x10-1 

NCEP_R1 1980-2017 1.07 2.25x10-1 8.42x10-1 
NCEP_R2 1980-2017 8.60x10-1 1.35x10-1 7.24x10-1 

Multi-Mean 
Reanalysis 1980-2017 6.75x10-1 1.55x10-1 5.21x10-1 

 
Supplementary Table 7. Thermodynamic Component trends mm day^-1 per decade (bold 

number: 5% significance) 
Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
ERA5 1980-2017 3.32x10-2 -1.96x10-2 5.27x10-2 
ERAI 1980-2017 7.52x10-2 2.45x10-2 5.07x10-2 
JRA55 1980-2017 3.36x10-2 3.10x10-3 3.05x10-2 

NCEP_R1 1980-2017 1.68x10-1 3.43x10-2 1.34x10-1 
NCEP_R2 1980-2017 7.66x10-2 2.45x10-3 7.42x10-2 

Multi-Mean 
Reanalysis 1980-2017 7.73x10-2 8.96x10-3 6.83x10-2 

 
Supplementary Table 8. Dynamic Component trends mm day^-1 per decade (bold number: 5% 

significance) 
Dataset Period Max. Trend Min. Trend Max. - Min. (∆S) Trend 
ERA5 1980-2017 1.34x10-1 -1.30x10-1 2.64x10-1 
ERAI 1980-2017 8.19x10-1 3.84x10-1 4.35x10-1 
JRA55 1980-2017 3.48x10-1 1.34x10-1 2.14x10-1 

NCEP_R1 1980-2017 8.77x10-1 1.74x10-1 7.04x10-1 
NCEP_R2 1980-2017 7.75x10-1 1.21x10-1 6.55x10-1 

Multi-Mean 
Reanalysis 1980-2017 5.91x10-1 1.37x10-1 4.54x10-1 
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