A31K: Regional Climate Modeling II AGU, 2015

http://earthobservatory.nasa.gov

Seo, Miller, Norris: Eddy-wind interaction in the California Current System: dynamics and impacts. J. Phys. Oceanogr., 2016

Dynamics and impacts of eddy-driven air-sea interaction in a regional air-sea coupled model for the US West Coast

> Hyodae Seo Woods Hole Oceanographic Institution Art Miller, Joel Norris Scripps Institution of Oceanography

http://earthobservatory.nasa.gov

SST and SSH

Affect the propagation Affect the amplitude

Quantifying dynamics and rectified effect: Regional O-A coupled model with an online spatial smoother

	7						
nal (SCOAF o.whoi.edu/sc	• WRF—ROMS couplin						
ce forcing Q _{net} , Pr, Q _{sw})	 Identical / km O-A re 6-yr simulations: 2005-2 						
ROMS		$\begin{array}{l} CTL-noT_{e}: effect of T_{e} \\ CTL-noU_{e}: effect of U_{e} \\ \hline \tau = \rho C_{D}(U_{a}-U_{o}) U_{a}-U_{o} \end{array}$					
-D loess spatial noothing (3°×3°)	Exp	Exp		τ formulation includes			
	СТ	CTL		Te	Ub		
	nol	noTe		\mathbf{X}	Uh		

b

Tb

Te

noTe

noUe

Ub

Ub

Weakened summertime eddy kinetic energy with eddy-wind interaction AVISO EKE (cm²s⁻²) CTL: $T_e \& U_e$ noTe noUe

- Te has no impact on EKE
- 42% weaker EKE with Ue

JAS 2005-2010

Reduced EKE due to reduced wind work and enhanced eddy drag dominant EKE terms $P = \frac{1}{\rho_0} \left(\overline{u' \tau'_x} + \overline{v' \tau'_y} \right) \quad \begin{array}{l} v' \tau_y: \text{ Wind work (P)} \\ u' \tau_x: \text{ Eddy drag (c)} \end{array}$ CTL=1.74 10% less wind work

Eddy-driven Ekman pumping velocity

pumping

2007

CTL-noUe WTOT

CTL-noU_e W_{TOT} vs ζ

Summary and Discussion

A surprisingly strong role of eddy-driven air-sea interaction through the surface current!

- The weakened EKE due to
 - Reduced wind momentum input
 - Enhanced eddy drag
- Eddies modify Ekman vertical velocities
 - W_{ζ} suppresses the eddy activity
 - W_{SST} influences the eddy propagation
- the WBC

Expect strong impacts on the air-sea process and storm tracks in

Seo, Miller, and Norris: Eddy-wind interaction in the California Current System: dynamics and impacts. J. Phys. Oceanogr., in press

Thanks! hseo@whoi.edu