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Abstract A suite of statistical atmosphere-only linear

inverse models of varying complexity are used to hindcast

recent MJO events from the Year of Tropical Convection

and the Cooperative Indian Ocean Experiment on Intra-

seasonal Variability/Dynamics of the Madden–Julian

Oscillation mission periods, as well as over the 2000–2009

time period. Skill exists for over two weeks, competitive

with the skill of some numerical models in both bivariate

correlation and root-mean-squared-error scores during both

observational mission periods. Skill is higher during

mature Madden–Julian Oscillation conditions, as opposed

to during growth phases, suggesting that growth dynamics

may be more complex or non-linear since they are not as

well captured by a linear model. There is little prediction

skill gained by including non-leading modes of variability.

Keywords Madden–Julian Oscillation � Hindcast �
Predictability � Linear inverse model � Tropical dynamics

1 Introduction

The Madden–Julian Oscillation (MJO) is a large-scale

zonally propagating atmospheric signal in tropical rainfall

and related fields (Madden and Julian 1971) and is the

dominant mode of intraseasonal variability in the tropics

(Wheeler and Hendon 2004, hereafter WH04). The MJO

modulates high-frequency weather, both in the tropics and

extra-tropics through teleconnections (Wallace and Gutzler

1981; Ferranti et al. 1990; Maloney 2000; Matthews and

Meredith 2004; Cassou 2008; Roundy and Gribble-Ver-

hagen 2010; Martin and Schumacher 2011), and has also

been shown to affect longer timescale climate variability,

for example the El Niño Southern Oscillation (Lau and

Chan 1985; Lau and Chan 1988; Kessler and Kleeman

2000; Zhang 2001; Subramanian et al. 2011). Many studies

have suggested that the MJO may provide an avenue for

predictability beyond the traditional 10-day limit (Waliser

et al. 2003; Reichler and Roads 2005). Verification of

predictions may be done in the space of the real-time

multivariate MJO index (RMM, see WH04), comprising

the leading two maximum covariance or empirical

orthogonal function (EOF) modes of combined tropical 200

and 850 mb zonal wind (u200 and u850, respectively) and

outgoing long-wave radiation (OLR) in the intraseasonal

band. Bivariate correlations of forecasts and verifications

of these two modes, and root-mean-squared error (RMSE)

metrics proposed by Lin et al. (2008), make a well-

accepted set of verification metrics (Gottschalck et al.

2010) which we will use here. Specific details of the

metrics and their interpretations can be found in those

papers.

MJO hindcast skill studies utilizing high-dimensional

numerical models have increased in recent years (Zhang

et al. 2013). These hindcasts are usually produced for time
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periods coinciding with large, coordinated MJO research

missions, such as the Year of Tropical Convection (YoTC,

Waliser and Moncrief 2007) and Cooperative Indian Ocean

Experiment on Intraseasonal Variability/Dynamics of the

Madden–Julian Oscillation (CINDY/DYNAMO, Yoney-

ama et al. 2013). Several statistical forecast studies relevant

to the MJO have been reported. Simple extrapolation by

Fourier filtered zero-padded longitude-time sections

(Wheeler and Weickmann 2001) is one approach. Many

kinds of covariance models have also been tried, including

Principal Oscillation Patterns (POP, von Storch and Xu

1990); a singular value decomposition forecasting tech-

nique (Waliser and Jones 1999); and lagged regressions on

EOFs of OLR and circulation indices, sometimes bandpass

filtered (Lo and Hendon 2000; Jones et al. 2004). Maharaj

and Wheeler (2005) and Jiang et al. (2008) are regression

models based on the RMM1 and RMM2 EOFs (convenient

for verification). Kang and Kim (2010) summarize the

predictability from a collection of statistical and dynamical

models, but the variety of skill tests utilized across past

studies complicates comparisons.

The linear inverse model (LIM, Penland and Magorian

1993) constitutes the least complex form of a reduced

stochastic-dynamic climate model (Majda et al. 2009) and

has been used for diagnostics and prediction in several

studies of the atmosphere (e.g., Winkler 2001; Newman

et al. 2003; Pegion and Sardeshmukh 2011) and coupled

atmosphere–ocean system (Newman et al. 2009). These

LIMs have been shown to have comparable predictive

capability to global circulation models, even though they

have far fewer degrees of freedom. Pegion and Sard-

eshmukh (2011) compared a simple atmospheric LIM to

coupled atmosphere–ocean numerical models to conclude

that there is room for hindcast skill improvement in tropical

climate prediction specifically.

In this paper, we explore the use of atmospheric LIMs in

the established context of MJO forecast verification. We

will see that simple stochastic-dynamic representations can

provide hindcast skills comparable to other statistical

approaches and to some GCMs, and offer useful informed

hypotheses about MJO dynamics along the way. Section 2

introduces LIM theory briefly, and establishes the subset of

models used in this analysis. Section 3 shows LIM hindcast

skill for the DYNAMO period, two YoTC MJO events, and

a ten-year continuous hindcast period. Finally, we conclude

with a discussion and directions for future research.

2 Model details and methodology

Using the notation of Newman et al. (2009), the funda-

mental assumption underpinning LIM is that the governing

dynamics of the system under consideration can be mod-

eled as

dx

dt
¼ Lxþ n ð1Þ

where x represents an appropriate system state vector, L is

a linear operator matrix, and n is a vector of stochastic

temporally white but spatially structured Gaussian noise. In

a system where (1) is stable, lag-covariance matrices decay

exponentially, so L can be estimated from observational

estimates of covariance matrices C(s) where CijðsÞ ¼
xiðt þ sÞxjðtÞ
� �

evaluated at any fixed lag, where subscripts

i and j correspond to covarying observational time series,

as well as the rows and columns of C, respectively. For

some chosen lead-time s0, L is estimated as L ¼
s�1

0 ln Cðs0ÞC�1ð0Þ
� �

: Eq. 1 can then be solved for analyt-

ically: xðt þ sÞ ¼ GðsÞxðtÞ þ e where GðsÞ ¼ expðLsÞ
represents the decaying, predictable signals at forecast lead

time s and e is a random variable vector with covariance

EðsÞ ¼ Cð0Þ �GðsÞCð0ÞG�1ðsÞ: The random vector e is

multivariate Gaussian and grows as a function of s
regardless of the initial condition at time t and can also be

estimated from a suitable set of hindcast errors. More

comprehensive overviews of LIM can be found in Penland

(1989) and Penland and Sardeshmukh (1995) and its

application in the tropics in Newman et al. (2009) and

Pegion and Sardeshmukh (2011).

The data channels which constitute x may be time series

of variables in physical space or principal component (PC)

time series of EOFs of the data comprising the desired

forecast space. The diagonal components of L express the

individual decay of each of the predicted variables,

whereas the off-diagonal components of L represent modal

interactions (if x is in a mode basis) or propagation (if x is

in a spatial basis). Imaginary L components describe

oscillations (e.g. in the POP model of Penland 1989). After

fitting L, the residual noise n can be obtained. Its EOFs

describe leading spatially coherent patterns of stochastic

forcing necessary to reproduce the observed data, and thus

might be interpretable in terms of sources of high-fre-

quency (spectrally white) turbulent or chaotic energy in

nature, which are being parameterized in the LIM as noise

(see Penland and Matrosova 1994).

In this study, we chose a reduced climate state vector

x = [W O]T, where W is the PCs associated with some

number of leading EOFs of concatenated 850 and 200 mb

u- and v- wind anomalies from the National Centers for

Environmental Prediction Climate Prediction Center

(NCEP/CPC) Reanalysis 2 (Kanamitsu et al. 2002), and

O is some number of leading PCs of OLR anomalies from

the National Oceanic and Atmospheric Administration

(NOAA) Interpolated OLR dataset (Liebmann and Smith
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1996). Both datasets are used from 1980 to 2012. To define

these EOF-PC pairs, all variables were first truncated to

T21 resolution, transformed to a Gaussian grid from 25�S

to 25�N, and smoothed with a 7-day running mean filter, as

in Newman et al. (2009). Unsmoothed data withheld from

the training set are projected onto the leading EOFs from
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Fig. 1 Bivariate correlation (left column) and RMSE (right column) for LIM suite hindcasts over the 2000–2009 validation period. Subplots a–

b show MJO skill sensitivity to OLR truncation. Subplots c–d and e–f are the same as a–b except for winds and s0 sensitivity, respectively
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the smoothed data to produce out-of-sample hindcasts

which do not utilize any future data and are therefore valid

as daily predictions. These smoothing techniques were

selected to attenuate unpredictable (high-frequency) sig-

nals that can corrupt LIM dynamics through aliasing, but in

this case MJO hindcast skills are largely insensitive to

these filtering choices since EOF shapes are dominated by

large-scale and low-frequency variability even in daily

fine-grid data. LIMs constructed directly from unfiltered

data EOFs provide similar predictions and corroborate the

results of this study.

Four-week tropical hindcasts were initiated for each day

Jan 1, 1999–Dec 31, 2012, for each combination of [4, 8,

12, …, 40] EOFs of W, [4, 8, 12, …, 40] EOFs of O, and

s0 = [2, 4, …, 14], resulting in 700 models. LIM hindcasts

are cross-validated by excluding the data during the year in

which the hindcast is constructed when fitting the model.

Model hindcasts were transformed back into physical space

and then projected onto the WH04 RMM indices (which

only involve zonal winds and OLR) for skill verification.

3 Results

The lowest complexity model is chosen as a baseline for

comparison with a training lag time of eight days: four

wind EOFs and four EOFs of OLR in the 25N-25S belt are

included, summarized as 4-W 4-O, and s0 = 8. Figure 1

shows bivariate correlation (left column) and RMSE (right

column) for the Jan 1, 2000–Dec 31, 2009 interval. Over-

all, the all-season ten-year MJO hindcast skill is quite

consistent across all our models. Decorrelation times,

measured as the time when correlation falls below 0.5

(Gottschalck et al. 2010), are about 14–16 days. Similarly,

RMSE skill, as measured by the lead-time at which the

RMSE crosses H2 (Lin et al. 2008; Vitart et al. 2010)

across all models is also about 14 days.

Figure 1a, b shows MJO skill sensitivity to OLR trun-

cation. All conclusions are consistent in both the correla-

tion and the RMSE skill metrics. Hindcast skill improves

slightly by increasing the number of OLR predictors

included in the model (Fig. 1a, b) until the skill level sat-

urates at a high complexity. Similarly, including more

W modes increases model skill essentially monotonically,

particularly after about 7 days of hindcast (Fig. 1c, d), but

with similar forecast skill prior to 7 days (when lower

complexity therefore suffices), again before the skill level

saturates at a high complexity. MJO hindcast skill is

insensitive to s0 (Fig. 1e, f), indicating smoothly and

exponentially decaying lag-covariances, as assumed in the

LIM theory (Penland and Sardeshmukh 1995). These

results suggest that there is little linear MJO predictability

(about 1–2 day skill extension) associated with non-leading

EOFs, and that under this model construction, prediction

skill is independent of the training lead-time. Sensitivities

for models composed of unfiltered EOFs are slightly

increased, however, the main conclusions remain consis-

tent with those presented here.

Figures 2a-d show the structure of the first four EOFs of

OLR used in the model. The first two EOFs show similar

equatorially symmetric patterns roughly orthogonal to each

other. The first pattern shows a pattern of low OLR in the

central Pacific region when the principal component is

positive while the second reveals a pattern with lowest

OLR in the Western Pacific region corresponding to a

positive PC value. The third and fourth EOFs of OLR have

both equatorial and off-equatorial structures in the West

Pacific and reveal patterns with higher wavenumbers

(wavenumbers 2–3) in the equatorial region.

Spatial patterns of the first four EOFs of the combined

850 and 200 mb winds are shown in Fig. 3a-h. Shading

indicates regions of convergence and divergence with blue

indicating regions of divergence and red indicating regions

of convergence corresponding to a positive PC value. The

first EOF of the winds at 850 and 200 mb (Figs. 3a-b) show

regions of strong high-level convergence and low-level

divergence over the Western Pacific Ocean region. This

region also corresponds to the concentrated variability in

OLR highlighted by the first pair of EOFs of OLR. The

second, third and fourth EOFs of winds reveal off-equa-

torial regions of increased variability in divergence espe-

cially in the region of the Inter-Tropical Convergence

Zone.

Leading EOFs of both OLR and the combined winds

have broad spectral peaks in the intraseasonal and inter-

annual band (not shown). Interactions of these modes, as

quantified by the matrix of interaction coefficients G(s)

(demonstrated in Fig. 4 as ||G(s = 7, 14, 21)||), confirm

that the magnitudes of the interactions between the leading

EOFs (Fig. 4, a-d) are dominant in comparison to inter-

actions between the non-leading EOFs, which tend to

decay toward zero for lesser modes of variability, partic-

ularly for large s. Interestingly, interaction coefficients

Gi\j(s) for the OO matrix block are generally of greater

magnitude than coefficients Gi[j(s), indicating that the

upscale interactions from modes of lower variability to

those of higher variability play a more dominant role than

those of downscale interactions in intraseasonal forecasts.

Figure 5a, b shows bivariate correlation and RMSE for

multiple hindcast intervals from the best-performing model

(24-W, 32-O, s0 = 6) based on bivariate correlation after

10 days over the whole 2000–2009 period. Results are

comparable to the numerical model scores for the YoTC

hindcast period of Oct. 10, 2009-Nov. 25, 2009 and Dec.

10, 2009-Jan. 25, 2010 (Klingaman et al. 2014, personal

communication) and the DYNAMO hindcast period of
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Sept. 1, 2011-Mar. 31, 2012 (Zhang et al. 2013, Fig. 2b).

Useful bivariate correlation skill ranges during DYNAMO

for numerical models are approximately 8–15? days, and

approximately 8–20? days for YoTC. LIM hindcast skill

for each comparable time period is on the low end of the

dynamical model intercomparisons, but within the model

spread, for both correlation and RMSE. This is particularly

true during the DYNAMO period, where LIM skill is

*18 days. MJO skill scores are broken out for periods

where the hindcast initialization date has a combined RMM

amplitude of\1 (weak), 1 \ ||RMM|| \ 2 (moderate), and

2 \ ||RMM|| (strong). LIM underperforms compared to

overall hindcast skill during weak MJO conditions as

indicated by rapidly decorrelating hindcasts, however

performance is markedly improved for moderate and

strong MJO hindcasts (Fig. 5a) for each time period rela-

tive to hindcasts initialized from weak MJOs. Figure 5c, d

shows bivariate correlation and RMSE separated by MJO

phase at model initialization for the 2000–2009 period.

LIM performance is relatively poor during phases 1, 2, and

6, with prediction skill to 14 days. Prediction during other

phases is extended to between 15 and 19 days for bivariate

correlation.

Figure 6 shows MJO hindcast propagation for the YoTC

E case, Oct 10, 2009-Nov 25, 2009 for the best-performing

model. The YoTC E case is selected since both the

behavior of observations and its hindcasts most clearly

illustrate the essential performance features of LIM, which

are common across many MJO events, as well as the

inability of LIM to capture (perhaps nonlinear) deviations

from a smoothly propagating MJO evident in this particular

event. Figure 6a shows multiple 3-week hindcasts initial-

ized every 7 days over the same MJO event. Model ini-

tialization RMM values do not perfectly coincide with

observation RMMs due to our EOF truncation and filtering

choices. LIM forecasts are poor during the weak and

moderate stages of MJO initiation, which correspond to

times preceding amplitude errors that grow rapidly. Fig-

ure 6a shows rapidly intensifying amplitude errors during

MJO initiation, which are consistent with information from

Fig. 5c and d that highlight the relatively poor performance

of MJO hindcasts during phases 1 and 2. This result indi-

cates that rapid MJO initiation depends on either non-linear

phenomena (e.g. Straub 2013; Kemball-Cook and Weare

2001) and/or processes, such as air-sea interaction in the

Indian Ocean (Yoneyama et al. 2013) perhaps, with no

linear projection on the set of current model variables in

the historical training data. Once the MJO has reached a

mature amplitude, however, hindcasts performance

improves both in propagation speed and amplitude.

Figure 6b shows a series of one-week lead-time hind-

casts. The nature of this plot is that each hindcast day is

initialized one-week prior and the hindcast plot responds as

it ‘learns’ of MJO initiation information. In this sense, the

LIM hindcast tends to mimic MJO behavior when it

incorporates the observed MJO state at the constant lead-

time lag. For example, the LIM produces a stalled MJO

around October 30 (index date 20 on Fig. 6b) since during
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the initiation day, October 23 (index 13 on Fig. 6b), the

MJO was stalled. The failure of LIM to capture the stalling

MJO behavior indicates that this YoTC E specific MJO

initiation feature is inconsistent with linearized historical

observations. Model behavior in these hindcast plots is

typical and is similar for other MJO events observed during

the YoTC and DYNAMO time periods (not shown).

4 Concluding remarks

This paper presents hindcast skill specific to MJO for a

suite of LIMs composed of OLR and 200 and 850 mb

winds over multiple intervals from 2000 to 2012. Results

show that LIM skill is on the low end of current full-

physics numerical models, but within the model spread for
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bivariate correlation and RMSE during two comparison

periods. This study highlights that these extremely simple

empirical models perform competitively with GCMs at the

low-end of the skill spread in MJO hindcasts. The LIMs

presented here also perform competitively with other MJO

statistical forecasting techniques, but are designed to

reproduce full spatial fields of tropical variability, making

them more comparable to numerical model output. We’ve

chosen here to focus on skill related to the RMM indices to

maximize the relevancy in the MJO community. Very little

additional prediction skill is gained through the inclusion

of more modes of variability, which in this case suggests

that the simplest LIMs are likely most appropriate for MJO

prediction, however the more complex LIMs may be useful

toward achieving other goals, such as forecasting higher

wavenumber features. This study also provides a forecast

performance baseline for comparison with other forecast

methodologies, particularly if only a short hindcast or

observation period is available. Lastly, the analytical noise

solution e provides the statistics of an ‘‘infinite’’-member

ensemble forecast that may be used for uncertainty quan-

tification at a much lower computational cost than pro-

ducing large GCM ensembles to sample the uncertainty

space.

The LIM performs particularly well during mature

stages of the MJO. This suggests either that the LIM for-

mulations presented here are missing key components of

MJO initiation and amplification that are not linearly

related to x or that MJO amplification marks a period of

dominantly non-linear deviation from an otherwise more

linear system which may be captured by better performing

numerical models. Alternately, smoothly propagating

mature MJO events whose amplitudes and phase speeds are

well captured by LIM suggest that at maturity, MJO

propagation behaves as a more linear system of traveling

waves. Prediction skill during the YoTC events is lower

than that during the DYNAMO and 2000–2009 validation

periods, however this behavior may be a product of the

short YoTC validation period.

There are many possible extensions to the LIMs pre-

sented here. Kondrashov et al. (2013) investigated the use

of a quadratic inverse model of RMMs for MJO forecast-

ing, which produce similar hindcast skill to our models.

This is perhaps because the dominant quadratic terms are

two orders of magnitude smaller than the linear coefficients

(Kondrashov et al. 2013, supplementary material) and that

there is at least some predictability beyond the RMMs

which is captured by our models. That same study,
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each (combined) field. Rows and columns are oriented as increasing

from the upper left
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however, achieved large hindcast skill improvements by

training the model noise component only from time periods

when the historically observed dynamics were similar to

those observed at the hindcast initiation with so called past-

noise forecasting. Another possible extension is to add a

seasonally cyclostationary time-dependence, originally

proposed by OrtizBevia (1997), by conditioning L and n on

the time of the year either as piecewise linear or subject to

a continuous empirical model. Previous studies have con-

structed seasonal LIMs (e.g., Winkler 2001; Newman et al.

2003; Pegion and Sardeshmukh 2011) and have achieved

marginal skill increases over an all-season LIM. Ocean–

atmosphere coupled LIMs may also add realism, but are

unlikely to yield additional MJO hindcast skill due to the

nearly uncoupled nature of the ocean and atmosphere at

subseasonal timescales (Newman et al. 2009). Since our

all-season LIM does not perform equally well at all

amplitudes and phases of the MJO, it is possible that an

MJO behavior-, amplitude- or phase-dependent LIM,

resulting in a piecewise-stationary linear model, could

yield large increases in MJO forecast skill, provided any

hindcast stitching procedures do not produce amplifying

errors and that the observed model skill deficiencies are not

merely manifestations of the intrinsic predictability of the

tropical atmosphere itself.

Lastly, it is well known that linear stochastic models with

Gaussian white noise produce Gaussian forecasts, whereas

high-frequency climate statistics are markedly non-Gaussian

(Perron and Sura 2013, Cavanaugh and Shen 2014). An

alternative mode reduction strategy, strategic choice of

additional independent observable inputs containing MJO

precursor and dynamics information, and/or augmentation of

the system with correlated additive and multiplicative noise,

suggested by Sura et al. (2005), may improve forecasts by

accounting for more aspects of variability, while maintaining

the simplicity of a linear stochastic framework.
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Fig. 5 Bivariate correlation (left column) and RMSE (right column)

for 24-W 32-O s0 = 6 LIM hindcasts. Subplots a, b show MJO skill

over multiple time periods, DYNAMO, YoTC, and 2000–2009,

separated additionally by their RMM amplitude performance. Sub-

plots c, d show hindcast skill over the 2000–2009 time period

separated by MJO phase. The DYNAMO performance in (a) is

directly comparable to Zhang et al. (2013) Fig. 2b. YoTC perfor-

mance is directly comparison to forthcoming figures in Klingaman

et al. (in preparation). The number of sample days is summarized in

the figure legends
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