

Coupled Ocean-Atmosphere Interactions over Oceanic Boundary Currents

wind

Impact of ocean eddy-forced wind stress variability

California Current System (Seo et al. 2016, JPO) Somali Current (Seo 2017, JCLI) East India Coastal Current (Seo et al. 2019, DSR-II)

> Hyodae Seo, WHOI (<u>hseo@whoi.edu</u>)

Ocean Sciences Meeting, San Diego, 2020

Two ways an ocean eddy influences wind stress

$$\tau = \rho_a C_D (W-U)^2 \qquad W = \underline{W} + W' \qquad U = \underline{U} + U'$$

Correlation bet'n high-pass filtered wind speed and SST

Two ways an ocean eddy influences wind stress

Can we quantify these two distinctive coupled effects on the ocean boundary currents and atmosphere?

Effect of *total* ocean currents on stability of flows: Well-known

Testing the effect of "eddy-mediated" air-sea coupling in a coupled model

with an online eddy filtering

http://hseo.whoi.edu/scoar/ Seo et al. (2007; 2014; 2016)

2D Loess smoothing at each coupling to remove the fine-scale ocean variability "seen" by the atmosphere.

Use half-power filter cutoff wavelength of **300-500 km**

Putrasahan et al. (2013); Seo et al. (2016); Seo (2017)

Impact of "mesoscale SST"-wind coupling

MLD shoals by 15% south of the separated EICC latitude due to upward displacement of the isopycnals below ML

84E

10

5

83E

N²: Increased just below the MLD

10

200

81E

-5

82E

0

Why upward displaced isopycnals within the anticyclonic eddies?

Summary

- Modulation of wind stress by mesoscale processes in the boundary current systems is recognized as a key player in the kinetic energy balance.
 - **Dependent on spatial scales**, strongest in the BoB at Ro~0.5 to 1.
- Mesoscale SST and current influence the wind stress different way, resulting in distinct feedback impacts on the oceans.
 - SST-wind affects the positions (GW shifted downstream, SC separation delayed)
 - Current-wind attenuates the intensity and increases the stratification under anticyclones.
- (not discussed today) Eddy-mediated air-sea coupling exerts rectified effects on ocean circulation/SST, inducing spatially coherent atmospheric responses.
 - Winter storminess and rainfall in the US West Coast (Seo et al. 2016)
 - Summer Monsoon Findlater Jet in the Arabian Sea (Seo 2017)

hseo@whoi.edu

Impact on the atmosphere? Yes, some downstream influence...

• Small (~5%) but significant changes in the axis of the FJ and the moisture transport

Impact on the atmosphere? Yes, some downstream influence.

0.5

0.5

- Some rectified effects on o, mmd⁻¹ mean SST and rainfall; O(5%) changes to the -0.5 mean.
- The spatial coherency between the offshore patterns and near-coastal patterns suggests a coastal land influence of 0 0 the perturbed mean SST -0.5 due to air-sea interaction.

Reduction of EKE and eddy wind work most effective at wavelengths of ~80-100 km, the 1st baroclinic Rossby deformation radius at 16N.