Coupled modeling of mesoscale dynamics and air-sea interaction in the Arabian Sea —Eddy-driven air-sea interaction and feedback

> Hyodae Seo Physical Oceanography Department Woods Hole Oceanographic Institution

> > ONR NASCar Meeting October 4-5, Seattle, WA

Eddy-driven air-sea interaction through SST and surface current

Seo et al. 2008: Ocean Modell. Modeling of Mesoscale Coupled Ocean-Atmosphere Interaction and its Feedback to Ocean in the Western Arabian Sea.

25km SCOAR model (Seo et al. 2008) Wek SST & SSH

Modeling of eddy-driven air-sea coupling in the AS

Modeling of eddy-driven air-sea coupling in the AS

Scripps Coupled Ocean Atmosphere Regional (SCOAR) Model Seo et al. (2007; 2014, J. Climate); http://hseo.whoi.edu/scoar/ Surface meteorology (U10, V10, SLP, T2, Q2, Q_{sw}, Q_{lw}, Pr) Model Coupler WRF or RSM Surface current ROMS

Exp	τincludes	
CTL	T _{tot}	<i>U</i> _{tot}
noT _e	T _{smo}	U _{tot}
noUe	T _{tot}	Usmo
noUtot	T _{tot}	no

0.5 2

10-year summertime climatologies of the simulated wind and current fields

Drifter climatology: Lumpkin & Johnson (2005)

T- τ **coupling**: Unambiguous influence on the SC, GW, and CF — Keeps the SC separation at 10°N

- About 1° downstream shifts in eastward jet in SC and GW in noTe
- Weaker and narrow cold filament in $\ensuremath{\mathsf{noT}_e}$

SSH 15cm

SST: 26.5°C

stward jet in SC and GW in noTe in noTe $% \mathcal{T}_{e}$

T- τ coupling influences on the wind work (P) and Wet

Direct modulation of $\tau \rightarrow$ Reduced P 10((1) (mostly zonal) over the CF keeps the offshore jet of SC at 10°N

$$P = P_m + P_e$$

= $\frac{1}{\rho_0} \left(\overline{u\tau_x} + \overline{v\tau_y} \right) + \frac{1}{\rho_0} \left(\overline{u'\tau_x'} + \overline{v'\tau_y'} \right)$

(2) Modulation of τ curl: upwelling (downwelling) upwind (downwind) maintains the CF position and intensity

$$We = \frac{\nabla \times \tau}{\rho f} + \frac{\beta \tau_x}{\rho f^2}$$

Wind energy input and energy conversion processes

20°N_I

$$P = P_m + P_e$$

$$= \frac{1}{\rho_0} \left(\overline{u\tau_x} + \overline{v\tau_y} \right) + \frac{1}{\rho_0} \left(\overline{u'\tau_x'} + \overline{v'\tau_y'} \right)$$
^{5°N}

$$C_{PE \to KE} = -\frac{g}{\rho_0} \int_{-h}^0 \left(\overline{\rho w} + \overline{\rho' w'} \right) dz \qquad 5$$

Depth integrated (m3/s3)

alongshore averaging

alongshore averaging

U-\tau coupling: reduces MKE by reducing Pm (mostly Pmx).

Damps the EKE due to reduced BT/BC processes.

Responses in SST and the moisture transport by the Findlater Jet CTL CTL-noUtot noUtot SST 20°N 0.5 30 28 26 10°N 0 0⁰ SST CTL noUtot CTL-noUtot x 10⁻³small (~5%) qV₈₅₀ 20°N but 10[°]N 0 0° --5 300.0 10°E50°E60°E70°E 0°E50°E60°E70°E -0°E 50°E 60[°]E 70°E

Reduced upwelling in the Omani coast and general weak warming of

noticeable change in the axis of the FJ

Summary

- A series of 10-yr WRF-ROMS model simulations show that:
- **T**- τ coupling affects the separation latitude of the SC \rightarrow Shifting the offshore jet northeastward by 1-2°. → Complementary influences of the wind work and the Ekman pumping
- **U**- τ coupling reduces the MKE and EKE by about 35%. \rightarrow Reducing the mean wind work and increasing the eddy-drag \rightarrow Making the modeled circulation more realistic compared to "observations" → Some evidence of the response in moisture transport by the Findlater Jet
- Spatio-temporally well resolved MKE and EKE estimates of the AS currents would be useful to evaluate the dynamics and impact of the coupling.

Thanks!

